


default search action
NIPS 1991: Denver, CO, USA
- John E. Moody, Stephen Jose Hanson, Richard Lippmann:

Advances in Neural Information Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991]. Morgan Kaufmann 1992, ISBN 1-55860-222-4
Neurobiology
- J. Allan Hobson, Adam N. Mamelak, Jeffrey P. Sutton:

Models Wanted: Must Fit Dimensions of Sleep and Dreaming. 3-10 - Mark Sydorenko, Eric D. Young:

Stationarity of Synaptic Coupling Strength Between Neurons with Nonstationary Discharge Properties. 11-18 - Peter Dayan, Geoffrey J. Goodhill:

Perturbing Hebbian Rules. 19-26 - Robert R. de Ruyter van Steveninck, William Bialek:

Statistical Reliability of a Blowfly Movement-Sensitive Neuron. 27-34 - Bartlett W. Mel:

The Clusteron: Toward a Simple Abstraction for a Complex Neuron. 35-42 - Öjvind Bernander, Christof Koch, Rodney J. Douglas:

Network Activity Determines Spatio-Temporal Integration in Single Cells. 43-50 - Anthony M. Zador, Brenda J. Claiborne, Thomas H. Brown:

Nonlinear Pattern Separation in Single Hippocampal Neurons with Active Dendritic Membrane. 51-58 - Anthony J. Bell:

Self-organization in Real Neurons: Anti-Hebb in 'Channel Space'? 59-66 - Adi R. Bulsara, E. W. Jacobs, Frank Moss:

Single Neuron Model: Response to Weak Modulation in the Presence of Noise. 67-74 - A. B. Bonds:

Dual Inhibitory Mechanisms for Definition of Receptive Field Characteristics in a Cat Striate Cortex. 75-82 - Klaus Obermayer, Klaus Schulten, Gary G. Blasdel:

A Comparison between a Neural Network Model for the Formation of Brain Maps and Experimental Data. 83-90 - Ron Keesing, David G. Stork, Carla J. Shatz:

Retinogeniculate Development: The Role of Competition and Correlated Retinal Activity. 91-97
Neuro-Dynamics
- James T. Buchanan:

Locomotion in a Lower Vertebrate: Studies of the Cellular Basis of Rhythmogenesis and Oscillator Coupling. 101-108 - Kenji Doya, Shuji Yoshizawa:

Adaptive Synchronization of Neural and Physical Oscillators. 109-116 - Heinz G. Schuster, Christof Koch:

Burst Synchronization without Frequency Locking in a Completely Solvable Neural Network Model. 117-124 - David Horn, Marius Usher:

Oscillatory Model of Short Term Memory. 125-132
Speech
- Patrick Haffner, Alex Waibel:

Multi-State Time Delay Networks for Continuous Speech Recognition. 135-142 - José Carlos Príncipe, Bert de Vries, Jyh-Ming Kuo, Pedro Guedes de Oliveira:

Modeling Applications with the Focused Gamma Net. 143-150 - Esther Levin, Roberto Pieraccini, Enrico Bocchieri:

Time-Warping Network: A Hybrid Framework for Speech Recognition. 151-158 - Elliot Singer, Richard Lippmann:

Improved Hidden Markov Models Speech Recognition Using Radial Basis Function Networks. 159-166 - Steve Renals, Nelson Morgan, Hervé Bourlard, Horacio Franco, Michael Cohen:

Connectionist Optimisation of Tied Mixture Hidden Markov Models. 167-174 - Yoshua Bengio, Renato de Mori, Giovanni Flammia, Ralf Kompe:

Neural Network - Gaussian Mixture Hybrid for Speech Recognition or Density Estimation. 175-182 - Alex Waibel, Ajay N. Jain, Arthur E. McNair, Joe Tebelskis, Louise Osterholtz, Hiroaki Saito, Otto Schmidbauer, Tilo Sloboda, Monika Woszczyna:

JANUS: Speech-to-Speech Translation Using Connectionist and Non-Connectionist Techniques. 183-190 - Makoto Hirayama, Eric Vatikiotis-Bateson, Mitsuo Kawato, Michael I. Jordan:

Forward Dynamics Modeling of Speech Motor Control Using Physiological Data. 191-198 - Mark A. Fanty, Ronald A. Cole, Krist Roginski:

English Alphabet Recognition with Telephone Speech. 199-206
Language
- Ajay N. Jain:

Generalization Performance in PARSEC - A Structured Connectionist Parsing Architecture. 209-216 - Gadi Pinkus:

Constructing Proofs in Symmetric Networks. 217-224 - Prahlad Gupta, David S. Touretzky:

A Connectionist Learning Approach to Analyzing Linguistic Stress. 225-232 - Ronald A. Sumida, Michael G. Dyer:

Propagation Filters in PDS Networks for Sequencing and Ambiguity Resolution. 233-240 - Yeshwant K. Muthusamy, Ronald A. Cole:

A Segment-Based Automatic Language Identification System. 241-248
Temporal Sequences
- Satinder Singh:

The Efficient Learning of Multiple Task Sequences. 251-258 - Gerald Tesauro:

Practical Issues in Temporal Difference Learning. 259-266 - Hermann Hild, Johannes Feulner, Wolfram Menzel:

HARMONET: A Neural Net for Harmonizing Chorales in the Style of J. S. Bach. 267-274 - Michael Mozer:

Induction of Multiscale Temporal Structure. 275-282 - Jeffrey P. Sutton, Adam N. Mamelak, J. Allan Hobson:

Network Model of State-Dependent Sequencing. 283-290 - Jürgen Schmidhuber:

Learning Unambiguous Reduced Sequence Descriptions. 291-298
Recurrent Networks
- Jerome T. Connor, Les E. Atlas, R. Douglas Martin:

Recurrent Networks and NARMA Modeling. 301-308 - Raymond L. Watrous, Gary M. Kuhn:

Induction of Finite-State Automata Using Second-Order Recurrent Networks. 309-317 - C. Lee Giles

, Clifford B. Miller, Dong Chen, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee:
Extracting and Learning an Unknown Grammar with Recurrent Neural Networks. 317-324 - Janet Wiles, Anthony Bloesch:

Operators and Curried Functions: Training and Analysis of Simple Recurrent Networks. 325-332 - Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee:

Green's Function Method for Fast On-Line Learning Algorithm of Recurrent Neural Networks. 333-340 - Trent E. Lange:

Dynamically-Adaptive Winner-Take-All Networks. 341-348
Vision
- David A. Robinson:

Information Processing to Create Eye Movements. 351-355 - Emad N. Eskandar, Barry J. Richmond, John A. Hertz, Lance M. Optican, Troels W. Kjær:

Decoding of Neuronal Signals in Visual Pattern Recognition. 356-363 - Davi Geiger, Ricardo A. Marques Pereira:

Learning How to Teach or Selecting Minimal Surface Data. 364-371 - Suzanna Becker, Geoffrey E. Hinton:

Learning to Make Coherent Predictions in Domains with Discontinuities. 372-379 - Paul A. Viola, Stephen G. Lisberger, Terrence J. Sejnowski:

Recurrent Eye Tracking Network Using a Distributed Representation of Image Motion. 380-387 - Trevor Darrell, Alex Pentland:

Against Edges: Function Approximation with Multiple Support Maps. 388-395 - Paul R. Cooper, Peter N. Prokopowicz:

Markov Random Fields Can Bridge Levels of Abstraction. 396-403 - Amnon Shashua:

Illumination and View Position in 3D Visual Recognition. 404-411 - Alexandre Pouget, Stephen A. Fisher, Terrence J. Sejnowski:

Hierarchical Transformation of Space in the Visual System. 412-419 - Subutai Ahmad:

VISIT: A Neural Model of Covert Visual Attention. 420-427 - Eric Mjolsness:

Visual Grammars and Their Neural Nets. 428-435 - Michael Mozer, Richard S. Zemel, Marlene Behrmann:

Learning to Segment Images Using Dynamic Feature Binding. 436-443 - Hayit Greenspan, Rodney M. Goodman, Rama Chellappa:

Combined Neural Network and Rule-Based Framework for Probabilistic Pattern Recognition and Discovery. 444-451 - Ronen Basri, Shimon Ullman:

Linear Operator for Object Recognition. 452-459 - Nathan Intrator, Joshua I. Gold, Heinrich H. Bülthoff, Shimon Edelman:

3D Object Recognition Using Unsupervised Feature Extraction. 460-467
Optical Character Recognition
- Isabelle Guyon, Vladimir Vapnik, Bernhard E. Boser, Léon Bottou, Sara A. Solla:

Structural Risk Minimization for Character Recognition. 471-479 - Hans Peter Graf, Craig R. Nohl, Jan Ben:

Image Segmentation with Networks of Variable States. 480-487 - Ofer Matan, Christopher J. C. Burges, Yann LeCun, John S. Denker:

Multi-Digit Recognition Using a Space Displacement Neural Network. 488-495 - James D. Keeler, David E. Rumelhart:

A Self-Organizing Integrated Segmentation and Recognition Neural Net. 496-503 - Gale Martin, Mosfeq Rashid:

Recognizing Overlapping Hand-Printed Characters by Centered-Object Integrated Segmentation and Recognition. 504-511 - Geoffrey E. Hinton, Christopher K. I. Williams, Michael Revow:

Adaptive Elastic Models for Hand-Printed Character Recognition. 512-519
Control and Planning
- Tony J. Prescott, John E. W. Mayhew:

Obstacle Avoidance through Reinforcement Learning. 523-530 - Sebastian Thrun, Knut Möller:

Active Exploration in Dynamic Environments. 531-538 - Michael D. Lemmon:

Oscillatory Neural Fields for Globally Optimal Path Planning. 539-546 - Hiroaki Gomi, Mitsuo Kawato:

Recognition of Manipulated Objects by Motor Learning. 547-554 - Gary M. Scott, Jude W. Shavlik, W. Harmon Ray:

Refined PID Controllers Using Neural Networks. 555-562 - Carlos D. Brody:

Fast Learning with Predictive Forward Models. 563-570 - Andrew W. Moore:

Fast, Robust Adaptive Control by Learning only Forward Models. 571-578 - Patrice Y. Simard, Yann LeCun:

Reverse TDNN: An Architecture For Trajectory Generation. 579-588 - David DeMers, Kenneth Kreutz-Delgado:

Learning Global Direct Inverse Kinematics. 589-595 - Paul Dean, John E. W. Mayhew, Pat Langdon:

A Neural Net Model for Adaptive Control of Saccadic Accuracy by Primate Cerebellum and Brainstem. 595-602 - Thomas J. Anastasio:

Learning in the Vestibular System: Simulations of Vestibular Compensation Using Recurrent Back-Propagation. 603-610 - N. E. Berthier, Satinder P. Singh, Andrew G. Barto, James C. Houk:

A Cortico-Cerebellar Model that Learns to Generate Distributed Motor Commands to Control a Kinematic Arm. 611-618 - Ealan A. Henis, Tamar Flash:

A Computational Mechanism to Account for Averaged Modified Hand Trajectories. 619-626 - Menashe Dornay, Yoji Uno, Mitsuo Kawato, Ryoji Suzuki:

Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model. 627-634
Applications
- Marwan A. Jabri, Stephen Pickard, Philip Heng Wai Leong, Z. Chi, Barry Flower, Y. Xie:

ANN Board Classification for Heart Defibrillators. 637-644 - Armando Manduca, Paul Christy, Richard L. Ehman:

Neural Network Diagnosis of Avascular Necrosis from Magnetic Resonance Images. 645-650 - Rita Venturini, William W. Lytton, Terrence J. Sejnowski:

Neural Network Analysis of Event Related Potentials and Electroencephalogram Predicts Vigilance. 651-658 - Martin Röscheisen, Reimar Hofmann, Volker Tresp:

Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency. 659-666 - Padhraic Smyth, Jeff Mellstrom:

Fault Diagnosis of Antenna Pointing Systems Using Hybrid Neural Network and Signal Processing Models. 667-674 - Sylvie Thiria, Carlos Mejia, Fouad Badran, Michel Crépon:

Multimodular Architecture fir Remote Sensing Options. 675-682 - John E. Moody, Joachim Utans:

Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction. 683-690 - Sheri L. Gish, Mario Blaum:

Adaptive Development of Connectionist Decoders for Complex Error-Correcting Codes. 691-697 - Ah Chung Tsoi:

Application of Neural Network Methodology to the Modelling of the Yield Strength in a Steel Rolling Plate Mill. 698-705 - Donald T. Freeman:

Computer Recognition of Wave Location in Graphical Data by a Neural Network. 706-713 - Hilary Tunley:

A Neural Network for Motion Detection of Drift-Balanced Stimuli. 714-721 - Mark W. Goudreau, C. Lee Giles

:
Neural Network Routing for Random Multistage Interconnection Networks. 722-729 - John C. Platt, Federico Faggin:

Networks for the Separation of Sources that Are Superimposed and Delayed. 730-737
Implementation
- Alice M. Chiang, Michael L. Chuang, Jeffrey R. LaFranchise:

CCD Neural Network Processors for Pattern Recognition. 741-747 - Charles F. Neugebauer, Amnon Yariv:

A Parallel Analog CCD/CMOS Signal Processor. 748-755 - Ronald G. Benson, Tobi Delbrück:

Direction Selective Silicon Retina that Uses Null Inhibition. 756-763 - Kwabena A. Boahen, Andreas G. Andreou:

A Contrast Sensitive Silicon Retina with Reciprocal Synapses. 764-772 - Eduard Säckinger, Bernhard E. Boser, Lawrence D. Jackel:

A Neurocomputer Board Based on the ANNA Neural Network Chip. 773-780 - Phil Kohn, Jeff A. Bilmes, Nelson Morgan, James Beck:

Software for ANN Training on a Ring Array Processor. 781-788 - David Blair Kirk, Kurt W. Fleischer, Lloyd Watts, Alan H. Barr:

Constrained Optimization Applied to the Parameter Setting Problem for Analog Circuits. 789-796 - John G. Harris:

Segmentation Circuits Using Constrained Optimization. 797-804 - Marc H. Cohen, Philippe O. Pouliquen, Andreas G. Andreou:

Analog LSI Implementation of an Auto-Adaptive Network for Real-Time Separation of Independent Signals. 805-812 - John Lazzaro:

Temporal Adaptation in a Silicon Auditory Nerve. 813-820 - Dana Z. Anderson, Claus Benkert, Verena Hebler, Ju-Seog Jang, Don Montgomery, Mark Saffman:

Optical Implementation of a Self-Organizing Feature Extractor. 821-828
Learning and Generalization
- Vladimir Vapnik:

Principles of Risk Minimization for Learning Theory. 831-838 - David J. C. MacKay:

Bayesian Model Comparison and Backprop Nets. 839-846 - John E. Moody:

The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems. 847-854 - David Haussler, Michael J. Kearns, Manfred Opper, Robert E. Schapire:

Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods. 855-862 - J. Stephen Judd:

Constant-Time Loading of Shallow 1-Dimensional Networks. 863-870 - Joshua Alspector, Anthony Jayakumar, Stephan Luna:

Experimental Evaluation of Learning in a Neural Microsystem. 871-878 - John Shawe-Taylor:

Threshold Network Learning in the Presence of Equivalences. 879-886 - Barak A. Pearlmutter:

Gradient Descent: Second Order Momentum and Saturating Error. 887-894 - Patrice Y. Simard, Bernard Victorri, Yann LeCun, John S. Denker:

Tangent Prop - A Formalism for Specifying Selected Invariances in an Adaptive Network. 895-903 - Alberto Bertoni, Paola Campadelli, Anna Morpurgo, Sandra Panizza:

Polynomial Uniform Convergence of Relative Frequencies to Probabilities. 904-911 - Yoav Freund, David Haussler:

Unsupervised Learning of Distributions of Binary Vectors Using 2-Layer Networks. 912-919 - Anthony Kuh, Thomas Petsche, Ronald L. Rivest:

Incrementally Learning Time-Varying Half Planes. 920-927 - Chuanyi Ji, Demetri Psaltis:

The VC-Dimension versus the Statistical Capacity of Multilayer Networks. 928-935 - Ying Zhao, Christopher G. Atkeson:

Some Approximation Properties of Projection Pursuit Learning Networks. 936-943 - Kai-Yeung Siu, Jehoshua Bruck:

Neural Computing with Small Weights. 944-949 - Anders Krogh, John A. Hertz:

A Simple Weight Decay Can Improve Generalization. 950-957 - Stephen M. Omohundro:

Best-First Model Merging for Dynamic Learning and Recognition. 958-965
Architectures and Algorithms
- Clayton McMillan, Michael Mozer, Paul Smolensky:

Rule Induction through Integrated Symbolic and Subsymbolic Processing. 969-976 - Geoffrey G. Towell, Jude W. Shavlik:

Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules. 977-984 - Michael I. Jordan, Robert A. Jacobs:

Hierarchies of Adaptive Experts. 985-992 - Steven J. Nowlan, Geoffrey E. Hinton:

Adaptive Soft Weight Tying using Gaussian Mixtures. 993-1000 - Paul W. Munro:

Repeat Until Bored: A Pattern Selection Strategy. 1001-1008 - Christian Darken, John E. Moody:

Towards Faster Stochastic Gradient Search. 1009-1016 - Nicol N. Schraudolph, Terrence J. Sejnowski:

Competitive Anti-Hebbian Learning of Invariants. 1017-1024 - Paul E. Stolorz:

Merging Constrained Optimisation with Deterministic Annealing to Solve Combinatorially Hard Problems. 1025-1032 - Petri Koistinen, Lasse Holmström:

Kernel Regression and Backpropagation Training With Noise. 1033-1039 - Robert C. Williamson, Peter L. Bartlett:

Splines, Rational Functions and Neural Networks. 1040-1047 - John Moody, Norman Yarvin:

Networks with Learned Unit Response Functions. 1048-1055 - Nicholas J. Redding, Tom Downs:

Learning in Feedforward Networks with Nonsmooth Functions. 1056-1063 - Terence D. Sanger, Richard S. Sutton, Christopher J. Matheus:

Iterative Construction of Sparse Polynomial Approximations. 1064-1071 - Mike Wynne-Jones:

Node Splitting: A Constructive Algorithm for Feed-Forward Neural Networks. 1072-1079 - Sowmya Ramachandran, Lorien Y. Pratt:

Information Measure Based Skeletonisation. 1080-1087 - David Rogers:

Data Analysis Using G/Splines. 1088-1095 - John S. Bridle, Anthony J. R. Heading, David J. C. MacKay:

Unsupervised Classifiers, Mutual Information and 'Phantom Targets'. 1096-1101 - Martin S. Glassman:

A Network of Localized Linear Discriminants. 1102-1109 - David J. Montana:

A Weighted Probabilistic Neural Network. 1110-1117 - Igor Grebert, David G. Stork, Ron Keesing, Steve Mims:

Network Generalization for Production: Learning and Producing Styled Letterforms. 1118-1124 - John B. Hampshire II, B. V. K. Vijaya Kumar:

Shooting Craps in Search of an Optimal Strategy for Training Connectionist Pattern Classifiers. 1125-1132 - Dietrich Wettschereck, Thomas G. Dietterich:

Improving the Performance of Radial Basis Function Networks by Learning Center Locations. 1133-1140 - Hans-Ulrich Bauer, Klaus Pawelzik, Theo Geisel:

A Topographic Product for the Optimization of Self-Organizing Feature Maps. 1141-1147
Performance Comparisions
- Jakob Bernasconi, Karl Gustafson:

Human and Machine 'Quick Modeling'. 1151-1158 - Jenq-Neng Hwang, Hang Li, Martin Mächler, R. Douglas Martin, Jim Schimert:

A Comparison of Projection Pursuit and Neural Network Regression Modeling. 1159-1166 - Leonard G. C. Hamey:

Benchmarking Feed-Forward Neural Networks: Models and Measures. 1167-1174

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














