default search action
Ulf Brefeld
Person information
- affiliation: Leuphana University of Lüneburg, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i7]Ulf Brefeld, Jesse Davis, Laura de Jong, Stephanie Kovalchik:
Computational Approaches to Strategy and Tactics in Sports (Dagstuhl Seminar 24081). Dagstuhl Reports 14(2): 164-181 (2024) - 2023
- [j17]Valéria Quadros dos Reis, Maria E. R. Rabello, Anderson C. Lima, Guilherme P. S. Jardim, Eraldo R. Fernandes, Ulf Brefeld:
Data practices in apps from Brazil: What do privacy policies inform us about? J. Interact. Syst. 14(1): 1-8 (2023) - [c55]Noha A. Sarhan, Christian Wilms, Vanessa Closius, Ulf Brefeld, Simone Frintrop:
Hands in Focus: Sign Language Recognition Via Top-Down Attention. ICIP 2023: 2555-2559 - [c54]Jennifer Jorina Matthiesen, Hanne Hastedt, Ulf Brefeld:
User Authentication via Multifaceted Mouse Movements and Outlier Exposure. IDA 2023: 300-313 - [e10]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected Papers. Communications in Computer and Information Science 1783, Springer 2023, ISBN 978-3-031-27526-5 [contents] - 2022
- [j16]Uwe Dick, Daniel Link, Ulf Brefeld:
Who can receive the pass? A computational model for quantifying availability in soccer. Data Min. Knowl. Discov. 36(3): 987-1014 (2022) - [c53]Yannick Rudolph, Ulf Brefeld:
Modeling Conditional Dependencies in Multiagent Trajectories. AISTATS 2022: 10518-10533 - [c52]Dennis Fassmeyer, Pascal Fassmeyer, Ulf Brefeld:
Semi-Supervised Generative Models for Multiagent Trajectories. NeurIPS 2022 - [e9]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 8th International Workshop, MLSA 2021, Virtual Event, September 13, 2021, Revised Selected Papers. Communications in Computer and Information Science 1571, Springer 2022, ISBN 978-3-031-02043-8 [contents] - 2021
- [j15]Ahcène Boubekki, Michael Kampffmeyer, Ulf Brefeld, Robert Jenssen:
Joint optimization of an autoencoder for clustering and embedding. Mach. Learn. 110(7): 1901-1937 (2021) - [c51]Samuel G. Fadel, Sebastian Mair, Ricardo da Silva Torres, Ulf Brefeld:
Principled Interpolation in Normalizing Flows. ECML/PKDD (2) 2021: 116-131 - [i6]Ulf Brefeld, Jesse Davis, Martin Lames, James J. Little:
Machine Learning in Sports (Dagstuhl Seminar 21411). Dagstuhl Reports 11(9): 45-63 (2021) - 2020
- [c50]Jennifer Jorina Matthiesen, Ulf Brefeld:
Assessing User Behavior by Mouse Movements. HCI (38) 2020: 68-75 - [c49]Yannick Rudolph, Ulf Brefeld, Uwe Dick:
Graph Conditional Variational Models: Too Complex for Multiagent Trajectories? ICBINB@NeurIPS 2020: 136-147 - [e8]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 7th International Workshop, MLSA 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings. Communications in Computer and Information Science 1324, Springer 2020, ISBN 978-3-030-64911-1 [contents] - [e7]Ulf Brefeld, Élisa Fromont, Andreas Hotho, Arno J. Knobbe, Marloes H. Maathuis, Céline Robardet:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I. Lecture Notes in Computer Science 11906, Springer 2020, ISBN 978-3-030-46149-2 [contents] - [e6]Ulf Brefeld, Élisa Fromont, Andreas Hotho, Arno J. Knobbe, Marloes H. Maathuis, Céline Robardet:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part II. Lecture Notes in Computer Science 11907, Springer 2020, ISBN 978-3-030-46146-1 [contents] - [e5]Ulf Brefeld, Élisa Fromont, Andreas Hotho, Arno J. Knobbe, Marloes H. Maathuis, Céline Robardet:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part III. Lecture Notes in Computer Science 11908, Springer 2020, ISBN 978-3-030-46132-4 [contents] - [i5]Samuel G. Fadel, Sebastian Mair, Ricardo da Silva Torres, Ulf Brefeld:
Principled Interpolation in Normalizing Flows. CoRR abs/2010.12059 (2020) - [i4]Ahcène Boubekki, Michael Kampffmeyer, Ulf Brefeld, Robert Jenssen:
Joint Optimization of an Autoencoder for Clustering and Embedding. CoRR abs/2012.03740 (2020)
2010 – 2019
- 2019
- [j14]Irina Pandarova, Torben Schmidt, Johannes Hartig, Ahcène Boubekki, Roger Dale Jones, Ulf Brefeld:
Predicting the Difficulty of Exercise Items for Dynamic Difficulty Adaptation in Adaptive Language Tutoring. Int. J. Artif. Intell. Educ. 29(3): 342-367 (2019) - [j13]Uwe Dick, Ulf Brefeld:
Learning to Rate Player Positioning in Soccer. Big Data 7(1): 71-82 (2019) - [j12]Ulf Brefeld, Jan Lasek, Sebastian Mair:
Probabilistic movement models and zones of control. Mach. Learn. 108(1): 127-147 (2019) - [c48]Maryam Tavakol, Tobias Joppen, Ulf Brefeld, Johannes Fürnkranz:
Personalized Transaction Kernels for Recommendation Using MCTS. KI 2019: 338-352 - [c47]Sebastian Mair, Ulf Brefeld:
Coresets for Archetypal Analysis. NeurIPS 2019: 7245-7253 - [e4]Ulf Brefeld, Edward Curry, Elizabeth Daly, Brian MacNamee, Alice Marascu, Fabio Pinelli, Michele Berlingerio, Neil Hurley:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part III. Lecture Notes in Computer Science 11053, Springer 2019, ISBN 978-3-030-10996-7 [contents] - [e3]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 5th International Workshop, MLSA 2018, Co-located with ECML/PKDD 2018, Dublin, Ireland, September 10, 2018, Proceedings. Lecture Notes in Computer Science 11330, Springer 2019, ISBN 978-3-030-17273-2 [contents] - 2018
- [j11]Sebastian Mair, Ulf Brefeld:
Distributed robust Gaussian Process regression. Knowl. Inf. Syst. 55(2): 415-435 (2018) - [c46]Ahcène Boubekki, Shailee Jain, Ulf Brefeld:
Mining User Trajectories in Electronic Text Books. EDM 2018 - [c45]Radhika Gaonkar, Maryam Tavakol, Ulf Brefeld:
MDP-based Itinerary Recommendation using Geo-Tagged Social Media. IDA 2018: 111-123 - [c44]Sebastian Mair, Yannick Rudolph, Vanessa Closius, Ulf Brefeld:
Frame-Based Optimal Design. ECML/PKDD (2) 2018: 447-463 - 2017
- [j10]Ulf Brefeld, Albrecht Zimmermann:
Guest editorial: Special issue on sports analytics. Data Min. Knowl. Discov. 31(6): 1577-1579 (2017) - [c43]Sebastian Mair, Ahcène Boubekki, Ulf Brefeld:
Frame-based Data Factorizations. ICML 2017: 2305-2313 - [c42]Ahcène Boubekki, Ulf Brefeld, Cláudio Leonardo Lucchesi, Wolfgang Stille:
Propagating Maximum Capacities for Recommendation. KI 2017: 72-84 - [c41]Jan Reubold, Ahcène Boubekki, Thorsten Strufe, Ulf Brefeld:
Infinite Mixtures of Markov Chains. NFMCP@PKDD/ECML 2017: 167-181 - [c40]Maryam Tavakol, Ulf Brefeld:
A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations. ECML/PKDD (2) 2017: 269-284 - 2016
- [j9]Konstantin Knauf, Daniel Memmert, Ulf Brefeld:
Spatio-temporal convolution kernels. Mach. Learn. 102(2): 247-273 (2016) - [j8]Cornelius Arndt, Ulf Brefeld:
Predicting the future performance of soccer players. Stat. Anal. Data Min. 9(5): 373-382 (2016) - [c39]Ahcène Boubekki, Ulf Kröhne, Frank Goldhammer, Waltraud Schreiber, Ulf Brefeld:
Data-Driven Analyses of Electronic Text Books. Solving Large Scale Learning Tasks 2016: 362-376 - [c38]Maryam Tavakol, Hamid Zafartavanaelmi, Ulf Brefeld:
Feature Extraction and Aggregation for Predicting the EURO 2016. MLSA@PKDD/ECML 2016 - 2015
- [c37]Ahcène Boubekki, Ulf Kröhne, Frank Goldhammer, Waltraud Schreiber, Ulf Brefeld:
Toward Data-Driven Analyses of Electronic Text Books. EDM 2015: 592-593 - [c36]Ahcène Boubekki, Ulf Brefeld, Thomas Delacroix:
Generalising IRT to Discriminate Between Examinees. EDM 2015: 604-605 - [c35]Markus Brandt, Ulf Brefeld:
Graph-based Approaches for Analyzing Team Interaction on the Example of Soccer. MLSA@PKDD/ECML 2015: 10-17 - [c34]Ulf Brefeld:
Multi-view learning with dependent views. SAC 2015: 865-870 - 2014
- [c33]Jamal Abdul Nasir, Nico Görnitz, Ulf Brefeld:
An Off-the-shelf Approach to Authorship Attribution. COLING 2014: 895-904 - [c32]Emmanouil Tzouridis, Jamal Abdul Nasir, Ulf Brefeld:
Learning to Summarise Related Sentences. COLING 2014: 1636-1647 - [c31]Daniel Bengs, Ulf Brefeld:
Computer-based Adaptive Speed Tests. EDM 2014: 221-224 - [c30]Ulf Brefeld:
Interdisciplinary Machine Learning. LWA 2014: 6 - [c29]Eraldo R. Fernandes, Ulf Brefeld, Roi Blanco, Jordi Atserias:
Using Wikipedia for Cross-Language Named Entity Recognition. MSM/MUSE/SenseML 2014: 1-25 - [c28]Jens Haase, Ulf Brefeld:
Mining Positional Data Streams. NFMCP 2014: 102-116 - [c27]Maryam Tavakol, Ulf Brefeld:
Factored MDPs for detecting topics of user sessions. RecSys 2014: 33-40 - [i3]Nico Görnitz, Marius Kloft, Konrad Rieck, Ulf Brefeld:
Toward Supervised Anomaly Detection. CoRR abs/1401.6424 (2014) - 2013
- [j7]Nico Görnitz, Marius Kloft, Konrad Rieck, Ulf Brefeld:
Toward Supervised Anomaly Detection. J. Artif. Intell. Res. 46: 235-262 (2013) - [c26]Daniel Bengs, Ulf Brefeld:
Adaptive Speeded Tests. LWA 2013: 86-89 - [c25]Emmanouil Tzouridis, Ulf Brefeld:
Learning Shortest Paths for Word Graphs. LWA 2013: 113-116 - [c24]Jens Haase, Ulf Brefeld:
Finding Similar Movements in Positional Data Streams. MLSA@PKDD/ECML 2013: 49-57 - 2012
- [c23]Peter Haider, Luca Chiarandini, Ulf Brefeld:
Discriminative clustering for market segmentation. KDD 2012: 417-425 - 2011
- [j6]Fabian Rathke, Katja Hansen, Ulf Brefeld, Klaus-Robert Müller:
StructRank: A New Approach for Ligand-Based Virtual Screening. J. Chem. Inf. Model. 51(1): 83-92 (2011) - [j5]Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Alexander Zien:
lp-Norm Multiple Kernel Learning. J. Mach. Learn. Res. 12: 953-997 (2011) - [c22]Giorgos Giannopoulos, Ulf Brefeld, Theodore Dalamagas, Timos K. Sellis:
Learning to rank user intent. CIKM 2011: 195-200 - [c21]Giuseppe Amodeo, Roi Blanco, Ulf Brefeld:
Hybrid models for future event prediction. CIKM 2011: 1981-1984 - [c20]Eraldo R. Fernandes, Ulf Brefeld:
Learning from Partially Annotated Sequences. ECML/PKDD (1) 2011: 407-422 - [c19]Ulf Brefeld, Berkant Barla Cambazoglu, Flavio Paiva Junqueira:
Document assignment in multi-site search engines. WSDM 2011: 575-584 - [i2]Alexander Binder, Shinichi Nakajima, Marius Kloft, Christina Müller, Wojciech Samek, Ulf Brefeld, Klaus-Robert Müller, Motoaki Kawanabe:
Insights from Classifying Visual Concepts with Multiple Kernel Learning. CoRR abs/1112.3697 (2011) - 2010
- [j4]Konrad Rieck, Tammo Krueger, Ulf Brefeld, Klaus-Robert Müller:
Approximate Tree Kernels. J. Mach. Learn. Res. 11: 555-580 (2010) - [j3]Ulf Brefeld, Lise Getoor, Sofus A. Macskassy:
Eighth workshop on mining and learning with graphs. SIGKDD Explor. 12(2): 63-65 (2010) - [e2]Ulf Brefeld, Lise Getoor, Sofus A. Macskassy:
Proceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG '10, Washington, D.C., USA, July 24-25, 2010. ACM 2010, ISBN 978-1-4503-0214-2 [contents] - [i1]Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Alexander Zien:
Non-Sparse Regularization and Efficient Training with Multiple Kernels. CoRR abs/1003.0079 (2010)
2000 – 2009
- 2009
- [c18]Alexander Binder, Motoaki Kawanabe, Ulf Brefeld:
Efficient Classification of Images with Taxonomies. ACCV (3) 2009: 351-362 - [c17]Nico Görnitz, Marius Kloft, Konrad Rieck, Ulf Brefeld:
Active learning for network intrusion detection. AISec 2009: 47-54 - [c16]Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Pavel Laskov, Klaus-Robert Müller, Alexander Zien:
Efficient and Accurate Lp-Norm Multiple Kernel Learning. NIPS 2009: 997-1005 - [c15]Nico Görnitz, Marius Kloft, Ulf Brefeld:
Active and Semi-supervised Data Domain Description. ECML/PKDD (1) 2009: 407-422 - [c14]Marius Kloft, Shinichi Nakajima, Ulf Brefeld:
Feature Selection for Density Level-Sets. ECML/PKDD (1) 2009: 692-704 - 2008
- [c13]Marius Kloft, Ulf Brefeld, Patrick Düssel, Christian Gehl, Pavel Laskov:
Automatic feature selection for anomaly detection. AISec 2008: 71-76 - [c12]Thoralf Klein, Ulf Brefeld, Tobias Scheffer:
Exact and Approximate Inference for Annotating Graphs with Structural SVMs. ECML/PKDD (1) 2008: 611-623 - 2007
- [b1]Ulf Brefeld:
Semi-supervised structured prediction models. Humboldt University of Berlin, Unter den Linden, Germany, 2007, pp. 1-168 - [c11]Peter Haider, Ulf Brefeld, Tobias Scheffer:
Supervised clustering of streaming data for email batch detection. ICML 2007: 345-352 - [c10]Alexander Zien, Ulf Brefeld, Tobias Scheffer:
Transductive support vector machines for structured variables. ICML 2007: 1183-1190 - [c9]Ulf Brefeld, Thoralf Klein, Tobias Scheffer:
Support Vector Machines for Collective Inference. MLG 2007 - 2006
- [c8]Ulf Brefeld, Thomas Gärtner, Tobias Scheffer, Stefan Wrobel:
Efficient co-regularised least squares regression. ICML 2006: 137-144 - [c7]Ulf Brefeld, Tobias Scheffer:
Semi-supervised learning for structured output variables. ICML 2006: 145-152 - 2005
- [j2]Jörg Hakenberg, Steffen Bickel, Conrad Plake, Ulf Brefeld, Hagen Zahn, Lukas Faulstich, Ulf Leser, Tobias Scheffer:
Systematic feature evaluation for gene name recognition. BMC Bioinform. 6(S-1) (2005) - [c6]Ulf Brefeld, Christoph Büscher, Tobias Scheffer:
Multi-view Discriminative Sequential Learning. ECML 2005: 60-71 - [c5]Ulf Brefeld, Christoph Büscher, Tobias Scheffer:
Multi-View Hidden Markov Perceptrons. LWA 2005: 134-138 - 2004
- [j1]Peter Geibel, Ulf Brefeld, Fritz Wysotzki:
Perceptron and SVM learning with generalized cost models. Intell. Data Anal. 8(5): 439-455 (2004) - [c4]Ulf Brefeld, Tobias Scheffer:
Co-EM support vector learning. ICML 2004 - [c3]Ulf Brefeld, Steffen Bickel, Tobias Scheffer:
Multi-View Lernen. LWA 2004: 131 - [e1]Andreas Abecker, Steffen Bickel, Ulf Brefeld, Isabel Drost, Nicola Henze, Olaf Herden, Mirjam Minor, Tobias Scheffer, Ljiljana Stojanovic, Stephan Weibelzahl:
LWA 2004: Lernen - Wissensentdeckung - Adaptivität, Berlin, 4. - 6. Oktober 2004, Workshopwoche der GI-Fachgruppen/Arbeitskreise (1) Fachgruppe Adaptivität und Benutzermodellierung in Interaktiven Softwaresystemen (ABIS 2004), (2) Arbeitskreis Knowledge Discovery (AKKD 2004), (3) Fachgruppe Maschinelles Lernen (FGML 2004), (4) Fachgruppe Wissens- und Erfahrungsmanagement (FGWM 2004). Humbold-Universität Berlin 2004 [contents] - 2003
- [c2]Ulf Brefeld, Peter Geibel, Fritz Wysotzki:
Support Vector Machines with Example Dependent Costs. ECML 2003: 23-34 - [c1]Peter Geibel, Ulf Brefeld, Fritz Wysotzki:
Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs. IDA 2003: 167-178
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-01 21:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint