
Thierry Denoeux
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j99]Thierry Denoeux
:
Distributed combination of belief functions. Inf. Fusion 65: 179-191 (2021) - 2020
- [j98]Feng Li, Shoumei Li, Thierry Denoeux
:
Combining clusterings in the belief function framework. Array 6: 100018 (2020) - [j97]Thierry Denoeux, Prakash P. Shenoy
:
An interval-valued utility theory for decision making with Dempster-Shafer belief functions. Int. J. Approx. Reason. 124: 194-216 (2020) - [j96]Thierry Denoeux
:
Calibrated model-based evidential clustering using bootstrapping. Inf. Sci. 528: 17-45 (2020) - [c92]Bin Yuan, Xiaodong Yue, Ying Lv, Thierry Denoeux:
Evidential Deep Neural Networks for Uncertain Data Classification. KSEM (2) 2020: 427-437 - [i8]Thierry Denoeux:
Belief functions induced by random fuzzy sets: Application to statistical inference. CoRR abs/2004.11638 (2020) - [i7]Thierry Denoeux:
NN-EVCLUS: Neural Network-based Evidential Clustering. CoRR abs/2009.12795 (2020) - [i6]Lianmeng Jiao, Thierry Denoeux, Zhun-ga Liu, Quan Pan:
EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering. CoRR abs/2010.01333 (2020)
2010 – 2019
- 2019
- [j95]Thierry Denoeux:
Editorial: Opening up computer science. Array 1-2: 100005 (2019) - [j94]Thierry Denoeux
:
Decision-making with belief functions: A review. Int. J. Approx. Reason. 109: 87-110 (2019) - [j93]Thierry Denoeux
, Orakanya Kanjanatarakul, Songsak Sriboonchitta:
A new evidential K-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approx. Reason. 113: 287-302 (2019) - [j92]Thierry Denoeux
:
Logistic regression, neural networks and Dempster-Shafer theory: A new perspective. Knowl. Based Syst. 176: 54-67 (2019) - [j91]Zhi-gang Su
, Thierry Denoeux
:
BPEC: Belief-Peaks Evidential Clustering. IEEE Trans. Fuzzy Syst. 27(1): 111-123 (2019) - [j90]Chunfeng Lian
, Su Ruan
, Thierry Denoeux, Hua Li, Pierre Vera:
Joint Tumor Segmentation in PET-CT Images Using Co-Clustering and Fusion Based on Belief Functions. IEEE Trans. Image Process. 28(2): 755-766 (2019) - [c91]Thierry Denoeux, Orakanya Kanjanatarakul:
Multistep Prediction using Point-Cloud Approximation of Continuous Belief Functions. FUZZ-IEEE 2019: 1-6 - [c90]Yixuan Qiao, Shoumei Li, Thierry Denoeux:
Collaborative Evidential Clustering. IFSA/NAFIPS 2019: 518-530 - [c89]Thierry Denoeux, Prakash P. Shenoy:
An Axiomatic Utility Theory for Dempster-Shafer Belief Functions. ISIPTA 2019: 145-155 - [c88]Liyao Ma, Thierry Denoeux:
Making Set-Valued Predictions in Evidential Classification: A Comparison of Different Approaches. ISIPTA 2019: 276-285 - [c87]Zheng Tong
, Philippe Xu
, Thierry Denoeux
:
ConvNet and Dempster-Shafer Theory for Object Recognition. SUM 2019: 368-381 - [p5]Frédéric Pichon, Didier Dubois, Thierry Denoeux:
Quality of Information Sources in Information Fusion. Information Quality in Information Fusion and Decision Making 2019: 31-49 - [e9]Sébastien Destercke, Thierry Denoeux, María Angeles Gil, Przemyslaw Grzegorzewski, Olgierd Hryniewicz:
Uncertainty Modelling in Data Science, SMPS 2018, Compiègne, France, 17-21 September 2018. Advances in Intelligent Systems and Computing 832, Springer 2019, ISBN 978-3-319-97546-7 [contents] - [i5]Thierry Denoeux:
Calibrated model-based evidential clustering using bootstrapping. CoRR abs/1912.06137 (2019) - [i4]Thierry Denoeux, Prakash P. Shenoy
:
An Interval-Valued Utility Theory for Decision Making with Dempster-Shafer Belief Functions. CoRR abs/1912.06594 (2019) - [i3]Zied Bouraoui, Antoine Cornuéjols, Thierry Denoeux, Sébastien Destercke, Didier Dubois, Romain Guillaume, João Marques-Silva, Jérôme Mengin, Henri Prade, Steven Schockaert, Mathieu Serrurier, Christel Vrain:
From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning (Kay R. Amel group). CoRR abs/1912.06612 (2019) - 2018
- [j89]Thierry Denoeux
, Shoumei Li:
Frequency-calibrated belief functions: Review and new insights. Int. J. Approx. Reason. 92: 232-254 (2018) - [j88]Liqi Sui, Pierre Feissel, Thierry Denoeux
:
Identification of elastic properties in the belief function framework. Int. J. Approx. Reason. 101: 69-87 (2018) - [j87]Zhi-gang Su, Thierry Denoeux, Yong-sheng Hao, Ming Zhao:
Evidential K-NN classification with enhanced performance via optimizing a class of parametric conjunctive t-rules. Knowl. Based Syst. 142: 7-16 (2018) - [j86]Feng Li, Shoumei Li, Thierry Denoeux:
k-CEVCLUS: Constrained evidential clustering of large dissimilarity data. Knowl. Based Syst. 142: 29-44 (2018) - [j85]Chunfeng Lian
, Su Ruan
, Thierry Denoeux, Hua Li, Pierre Vera:
Spatial Evidential Clustering With Adaptive Distance Metric for Tumor Segmentation in FDG-PET Images. IEEE Trans. Biomed. Eng. 65(1): 21-30 (2018) - [j84]Thierry Denoeux
, Shoumei Li, Songsak Sriboonchitta:
Evaluating and Comparing Soft Partitions: An Approach Based on Dempster-Shafer Theory. IEEE Trans. Fuzzy Syst. 26(3): 1231-1244 (2018) - [c86]Thierry Denoeux:
Logistic Regression Revisited: Belief Function Analysis. BELIEF 2018: 57-64 - [c85]Orakanya Kanjanatarakul, Siwarat Kuson, Thierry Denoeux:
An Evidential K-Nearest Neighbor Classifier Based on Contextual Discounting and Likelihood Maximization. BELIEF 2018: 155-162 - [p4]Thierry Denoeux:
Quantifying Predictive Uncertainty Using Belief Functions: Different Approaches and Practical Construction. Predictive Econometrics and Big Data 2018: 157-176 - [e8]Sébastien Destercke, Thierry Denoeux, Fabio Cuzzolin, Arnaud Martin:
Belief Functions: Theory and Applications - 5th International Conference, BELIEF 2018, Compiègne, France, September 17-21, 2018, Proceedings. Lecture Notes in Computer Science 11069, Springer 2018, ISBN 978-3-319-99382-9 [contents] - [e7]Van-Nam Huynh, Masahiro Inuiguchi, Dang Hung Tran, Thierry Denoeux:
Integrated Uncertainty in Knowledge Modelling and Decision Making - 6th International Symposium, IUKM 2018, Hanoi, Vietnam, March 15-17, 2018, Proceedings. Lecture Notes in Computer Science 10758, Springer 2018, ISBN 978-3-319-75428-4 [contents] - [i2]Thierry Denoeux:
Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspective. CoRR abs/1807.01846 (2018) - [i1]Thierry Denoeux:
Decision-Making with Belief Functions: a Review. CoRR abs/1808.05322 (2018) - 2017
- [j83]Benjamin Quost, Thierry Denoeux
, Shoumei Li:
Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression. Adv. Data Anal. Classif. 11(4): 659-690 (2017) - [j82]Jean-Baptiste Bordes
, Franck Davoine
, Philippe Xu, Thierry Denoeux
:
Evidential grammars: A compositional approach for scene understanding. Application to multimodal street data. Appl. Soft Comput. 61: 1173-1185 (2017) - [j81]Songsak Sriboonchitta, Jianxu Liu
, Aree Wiboonpongse, Thierry Denoeux:
A double-copula stochastic frontier model with dependent error components and correction for sample selection. Int. J. Approx. Reason. 80: 174-184 (2017) - [c84]Feng Li, Shoumei Li, Nana Tang, Thierry Denoeux:
Constrained interval-valued linear regression model. FUSION 2017: 1-8 - [c83]Chunfeng Lian, Su Ruan
, Thierry Denoeux, Yu Guo, Pierre Vera:
Accurate tumor segmentation in FDG-PET images with guidance of complementary CT images. ICIP 2017: 4447-4451 - [c82]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric. ISBI 2017: 1177-1180 - [c81]Orakanya Kanjanatarakul, Thierry Denoeux:
Distributed data fusion in the dempster-shafer framework. SoSE 2017: 1-6 - 2016
- [j80]Benjamin Quost, Thierry Denoeux:
Clustering and classification of fuzzy data using the fuzzy EM algorithm. Fuzzy Sets Syst. 286: 134-156 (2016) - [j79]Philippe Xu
, Franck Davoine
, Hongbin Zha, Thierry Denoeux:
Evidential calibration of binary SVM classifiers. Int. J. Approx. Reason. 72: 55-70 (2016) - [j78]Orakanya Kanjanatarakul, Thierry Denoeux, Songsak Sriboonchitta:
Prediction of future observations using belief functions: A likelihood-based approach. Int. J. Approx. Reason. 72: 71-94 (2016) - [j77]Thierry Denoeux:
40 years of Dempster-Shafer theory. Int. J. Approx. Reason. 79: 1-6 (2016) - [j76]Thierry Denoeux
, Songsak Sriboonchitta, Orakanya Kanjanatarakul:
Evidential clustering of large dissimilarity data. Knowl. Based Syst. 106: 179-195 (2016) - [j75]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Fabrice Jardin, Pierre Vera:
Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Medical Image Anal. 32: 257-268 (2016) - [j74]Philippe Xu, Franck Davoine
, Jean-Baptiste Bordes, Huijing Zhao, Thierry Denoeux:
Multimodal information fusion for urban scene understanding. Mach. Vis. Appl. 27(3): 331-349 (2016) - [j73]Sawsan Kanj, Fahed Abdallah, Thierry Denoeux, Kifah Tout:
Editing training data for multi-label classification with the k-nearest neighbor rule. Pattern Anal. Appl. 19(1): 145-161 (2016) - [j72]Marie-Hélène Masson, Sébastien Destercke, Thierry Denoeux:
Modelling and predicting partial orders from pairwise belief functions. Soft Comput. 20(3): 939-950 (2016) - [j71]Chunfeng Lian
, Su Ruan
, Thierry Denoeux:
Dissimilarity Metric Learning in the Belief Function Framework. IEEE Trans. Fuzzy Syst. 24(6): 1555-1564 (2016) - [j70]Lianmeng Jiao
, Thierry Denoeux, Quan Pan:
A Hybrid Belief Rule-Based Classification System Based on Uncertain Training Data and Expert Knowledge. IEEE Trans. Syst. Man Cybern. Syst. 46(12): 1711-1723 (2016) - [c80]Orakanya Kanjanatarakul, Songsak Sriboonchitta, Thierry Denoeux:
k-EVCLUS: Clustering Large Dissimilarity Data in the Belief Function Framework. BELIEF 2016: 105-112 - [c79]Liqi Sui, Pierre Feissel, Thierry Denoeux:
Identification of Elastic Properties Based on Belief Function Inference. BELIEF 2016: 182-189 - [c78]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
Joint Feature Transformation and Selection Based on Dempster-Shafer Theory. IPMU (1) 2016: 253-261 - [c77]Thierry Denoeux, Orakanya Kanjanatarakul:
Evidential Clustering: A Review. IUKM 2016: 24-35 - [c76]Chunfeng Lian
, Su Ruan
, Thierry Denoeux, Hua Li, Pierre Vera:
Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PET Images. MICCAI (2) 2016: 61-69 - [c75]Thierry Denoeux, Orakanya Kanjanatarakul:
Beyond Fuzzy, Possibilistic and Rough: An Investigation of Belief Functions in Clustering. SMPS 2016: 157-164 - [e6]Van-Nam Huynh, Masahiro Inuiguchi, Bac Le, Bao Nguyen Le, Thierry Denoeux:
Integrated Uncertainty in Knowledge Modelling and Decision Making - 5th International Symposium, IUKM 2016, Da Nang, Vietnam, November 30 - December 2, 2016, Proceedings. Lecture Notes in Computer Science 9978, 2016, ISBN 978-3-319-49045-8 [contents] - 2015
- [j69]Aree Wiboonpongse, Jianxu Liu
, Songsak Sriboonchitta, Thierry Denoeux:
Modeling dependence between error components of the stochastic frontier model using copula: Application to intercrop coffee production in Northern Thailand. Int. J. Approx. Reason. 65: 34-44 (2015) - [j68]Xun Wang
, Shoumei Li, Thierry Denoeux
:
Interval-Valued Linear Model. Int. J. Comput. Intell. Syst. 8(1): 114-127 (2015) - [j67]Lianmeng Jiao
, Quan Pan, Thierry Denoeux, Yan Liang, Xiaoxue Feng:
Belief rule-based classification system: Extension of FRBCS in belief functions framework. Inf. Sci. 309: 26-49 (2015) - [j66]Thierry Denoeux
, Orakanya Kanjanatarakul, Songsak Sriboonchitta:
EK-NNclus: A clustering procedure based on the evidential K-nearest neighbor rule. Knowl. Based Syst. 88: 57-69 (2015) - [j65]Chunfeng Lian
, Su Ruan
, Thierry Denoeux:
An evidential classifier based on feature selection and two-step classification strategy. Pattern Recognit. 48(7): 2318-2327 (2015) - [c74]Lianmeng Jiao
, Thierry Denoeux, Quan Pan:
Evidential Editing K-Nearest Neighbor Classifier. ECSQARU 2015: 461-471 - [c73]Philippe Xu, Franck Davoine, Thierry Denoeux:
Evidential multinomial logistic regression for multiclass classifier calibration. FUSION 2015: 1106-1112 - [c72]Chunfeng Lian
, Su Ruan
, Thierry Denoeux, Pierre Vera:
Outcome prediction in tumour therapy based on Dempster-Shafer theory. ISBI 2015: 63-66 - [c71]Abdeldjalil Ouahabi, Benjamin Quost, Atef Gayed, Thierry Denoeux:
Estimating energy consumption of a PHEV using vehicle and on-board navigation data. Intelligent Vehicles Symposium 2015: 755-760 - [c70]Chunfeng Lian
, Su Ruan
, Thierry Denoeux, Hua Li, Pierre Vera:
Dempster-Shafer Theory Based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy. MICCAI (3) 2015: 695-702 - [p3]Orakanya Kanjanatarakul, Nachatchapong Kaewsompong, Songsak Sriboonchitta, Thierry Denoeux:
Estimation and Prediction Using Belief Functions: Application to Stochastic Frontier Analysis. Econometrics of Risk 2015: 171-184 - [p2]Supanika Leurcharusmee, Jirakom Sirisrisakulchai, Songsak Sriboonchitta, Thierry Denoeux:
The Classifier Chain Generalized Maximum Entropy Model for Multi-label Choice Problems. Econometrics of Risk 2015: 185-199 - [e5]Sébastien Destercke, Thierry Denoeux:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 13th European Conference, ECSQARU 2015, Compiègne, France, July 15-17, 2015. Proceedings. Lecture Notes in Computer Science 9161, Springer 2015, ISBN 978-3-319-20806-0 [contents] - [e4]Van-Nam Huynh, Masahiro Inuiguchi, Thierry Denoeux:
Integrated Uncertainty in Knowledge Modelling and Decision Making - 4th International Symposium, IUKM 2015, Nha Trang, Vietnam, October 15-17, 2015, Proceedings. Lecture Notes in Computer Science 9376, Springer 2015, ISBN 978-3-319-25134-9 [contents] - 2014
- [j64]Ana Colubi, Thierry Denoeux:
Special issue on imprecision in statistical data analysis. Comput. Stat. Data Anal. 71: 787-788 (2014) - [j63]Nadia Ben Abdallah, Nassima Mouhous Voyneau, Thierry Denoeux:
Combining statistical and expert evidence using belief functions: Application to centennial sea level estimation taking into account climate change. Int. J. Approx. Reason. 55(1): 341-354 (2014) - [j62]Orakanya Kanjanatarakul, Songsak Sriboonchitta, Thierry Denoeux
:
Forecasting using belief functions: An application to marketing econometrics. Int. J. Approx. Reason. 55(5): 1113-1128 (2014) - [j61]Thierry Denoeux
:
Likelihood-based belief function: Justification and some extensions to low-quality data. Int. J. Approx. Reason. 55(7): 1535-1547 (2014) - [j60]Thierry Denoeux
:
Rejoinder on "Likelihood-based belief function: Justification and some extensions to low-quality data". Int. J. Approx. Reason. 55(7): 1614-1617 (2014) - [j59]Benoît Lelandais, Su Ruan
, Thierry Denoeux
, Pierre Vera, Isabelle Gardin
:
Fusion of multi-tracer PET images for dose painting. Medical Image Anal. 18(7): 1247-1259 (2014) - [j58]Violaine Antoine, Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux:
CEVCLUS: evidential clustering with instance-level constraints for relational data. Soft Comput. 18(7): 1321-1335 (2014) - [j57]Thierry Denoeux, Nicole El Zoghby, Véronique Cherfaoui, Antoine Jouglet:
Optimal Object Association in the Dempster-Shafer Framework. IEEE Trans. Cybern. 44(12): 2521-2531 (2014) - [j56]Philippe Xu, Franck Davoine
, Jean-Baptiste Bordes, Thierry Denoeux
:
Fusion d'informations pour la compréhension de scènes. Traitement du Signal 31(1-2): 57-80 (2014) - [j55]Emmanuel Ramasso
, Thierry Denoeux
:
Making Use of Partial Knowledge About Hidden States in HMMs: An Approach Based on Belief Functions. IEEE Trans. Fuzzy Syst. 22(2): 395-405 (2014) - [c69]Philippe Xu, Franck Davoine, Thierry Denoeux
:
Evidential Logistic Regression for Binary SVM Classifier Calibration. Belief Functions 2014: 49-57 - [c68]Supanika Leurcharusmee, Peerapat Jatukannyaprateep, Songsak Sriboonchitta, Thierry Denoeux:
The Evidence-Theoretic k-NN Rule for Rank-Ordered Data: Application to Predict an Individual's Source of Loan. Belief Functions 2014: 58-67 - [c67]Nicolas Sutton-Charani, Sébastien Destercke, Thierry Denoeux
:
Training and Evaluating Classifiers from Evidential Data: Application to E 2 M Decision Tree Pruning. Belief Functions 2014: 87-94 - [c66]Kittawit Autchariyapanitkul, Somsak Chanaim, Songsak Sriboonchitta, Thierry Denoeux:
Predicting Stock Returns in the Capital Asset Pricing Model Using Quantile Regression and Belief Functions. Belief Functions 2014: 219-226 - [c65]Philippe Xu, Franck Davoine, Thierry Denoeux:
Evidential combination of pedestrian detectors. BMVC 2014 - [c64]Lianmeng Jiao, Thierry Denoeux, Quan Pan:
Fusion of pairwise nearest-neighbor classifiers based on pairwise-weighted distance metric and Dempster-Shafer theory. FUSION 2014: 1-7 - [c63]Nicolas Sutton-Charani
, Sébastien Destercke, Thierry Denoeux:
Application of E 2 M Decision Trees to Rubber Quality Prediction. IPMU (1) 2014: 107-116 - [c62]Nicole El Zoghby, Véronique Cherfaoui, Thierry Denoeux:
Evidential distributed dynamic map for cooperative perception in VANets. Intelligent Vehicles Symposium 2014: 1421-1426 - [e3]Van-Nam Huynh, Thierry Denoeux, Dang Hung Tran, Anh-Cuong Le
, Son Bao Pham:
Knowledge and Systems Engineering - Proceedings of the Fifth International Conference, KSE 2013, Volume 1, Hanoi, Vietnam, 17-19 October, 2013. Advances in Intelligent Systems and Computing 244, Springer 2014, ISBN 978-3-319-02740-1 [contents] - [e2]Van-Nam Huynh, Thierry Denoeux, Dang Hung Tran, Anh-Cuong Le
, Son Bao Pham:
Knowledge and Systems Engineering - Proceedings of the Fifth International Conference KSE 2013, Volume 2. Advances in Intelligent Systems and Computing 245, Springer 2014, ISBN 978-3-319-02820-0 [contents] - 2013
- [j54]Thierry Denoeux:
Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework. IEEE Trans. Knowl. Data Eng. 25(1): 119-130 (2013) - [c61]Nicole El Zoghby, Véronique Cherfaoui, Thierry Denoeux:
Optimal object association from pairwise evidential mass functions. FUSION 2013: 774-780 - [c60]Nadia Ben Abdallah, Nassima Mouhous Voyneau, Thierry Denoeux:
Using Dempster-Shafer theory to model uncertainty in climate change and environmental impact assessments. FUSION 2013: 2117-2124 - [c59]Nicolas Sutton-Charani
, Sébastien Destercke, Thierry Denoeux
:
Learning Decision Trees from Uncertain Data with an Evidential EM Approach. ICMLA (1) 2013: 111-116 - [c58]Jean-Baptiste Bordes, Franck Davoine, Philippe Xu, Thierry Denoeux:
Evidential Grammars for Image Interpretation - Application to Multimodal Traffic Scene Understanding. IUKM 2013: 65-78 - [c57]Philippe Xu, Franck Davoine, Jean-Baptiste Bordes, Huijing Zhao, Thierry Denoeux:
Information Fusion on Oversegmented Images: An Application for Urban Scene Understanding. MVA 2013: 189-193 - 2012
- [j53]Thierry Denoeux
, Marie-Hélène Masson:
Evidential reasoning in large partially ordered sets - Application to multi-label classification, ensemble clustering and preference aggregation. Ann. Oper. Res. 195(1): 135-161 (2012) - [j52]Violaine Antoine, Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux:
CECM: Constrained evidential C-means algorithm. Comput. Stat. Data Anal. 56(4): 894-914 (2012) - [j51]Frédéric Pichon, Didier Dubois, Thierry Denoeux
:
Relevance and truthfulness in information correction and fusion. Int. J. Approx. Reason. 53(2): 159-175 (2012) - [j50]Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin
:
Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints. Pattern Anal. Appl. 15(3): 313-326 (2012) - [j49]Zohra Leila Cherfi, Latifa Oukhellou, Etienne Côme, Thierry Denoeux, Patrice Aknin
:
Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis. Soft Comput. 16(5): 741-754 (2012) - [c56]Sawsan Kanj, Fahed Abdallah, Thierry Denoeux
:
Evidential Multi-label Classification Using the Random k-Label Sets Approach. Belief Functions 2012: 21-28 - [c55]Nicolas Sutton-Charani
, Sébastien Destercke, Thierry Denoeux
:
Classification Trees Based on Belief Functions. Belief Functions 2012: 77-84 - [c54]Marie-Hélène Masson, Thierry Denoeux
:
Ranking from Pairwise Comparisons in the Belief Functions Framework. Belief Functions 2012: 311-318 - [c53]Nicole El Zoghby, Véronique Cherfaoui, Bertrand Ducourthial, Thierry Denoeux
:
Distributed Data Fusion for Detecting Sybil Attacks in VANETs. Belief Functions 2012: 351-358 - [c52]Emmanuel Ramasso
, Thierry Denoeux
, Noureddine Zerhouni:
Partially-Hidden Markov Models. Belief Functions 2012: 359-366 - [c51]Didier Dubois, Thierry Denoeux
:
Conditioning in Dempster-Shafer Theory: Prediction vs. Revision. Belief Functions 2012: 385-392 - [c50]Nadia Ben Abdallah, Nassima Mouhous Voyneau, Thierry Denoeux:
Combining Statistical and Expert Evidence within the D-S Framework: Application to Hydrological Return Level Estimation. Belief Functions 2012: 393-400 - [c49]Sawsan Kanj, Fahed Abdallah, Thierry Denoeux:
Purifying training data to improve performance of multi-label classification algorithms. FUSION 2012: 1784-1791 - [c48]Rui Jorge Almeida, Thierry Denoeux
, Uzay Kaymak
:
Constructing Rule-Based Models Using the Belief Functions Framework. IPMU (3) 2012: 554-563 - [c47]Bertrand Ducourthial, Véronique Cherfaoui, Thierry Denoeux:
Self-stabilizing Distributed Data Fusion. SSS 2012: 148-162 - [e1]Thierry Denoeux, Marie-Hélène Masson:
Belief Functions: Theory and Applications - Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France, 9-11 May 2012. Advances in Intelligent and Soft Computing 164, Springer 2012, ISBN 978-3-642-29460-0 [contents] - 2011
- [j48]Zoulficar Younes, Fahed Abdallah, Thierry Denoeux, Hichem Snoussi:
A Dependent Multilabel Classification Method Derived from the k-Nearest Neighbor Rule. EURASIP J. Adv. Signal Process. 2011 (2011) - [j47]Thierry Denoeux
:
Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst. 183(1): 72-91 (2011) - [j46]Marie-Hélène Masson, Thierry Denoeux:
Ensemble clustering in the belief functions framework. Int. J. Approx. Reason. 52(1): 92-109 (2011) - [j45]Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux:
Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules. Int. J. Approx. Reason. 52(3): 353-374 (2011) - [j44]