default search action
Guang Lin
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j104]Yuexiang Li, Yanping Wang, Guang Lin, Yawen Huang, Jingxin Liu, Yi Lin, Dong Wei, Qirui Zhang, Kai Ma, Zhiqiang Zhang, Guangming Lu, Yefeng Zheng:
Triplet-branch network with contrastive prior-knowledge embedding for disease grading. Artif. Intell. Medicine 149: 102801 (2024) - [j103]Yuepeng Wang, Jie Li, Wenju Zhao, I. M. Navon, Guang Lin:
Accelerating inverse inference of ensemble Kalman filter via reduced-order model trained using adaptive sparse observations. J. Comput. Phys. 496: 112600 (2024) - [j102]Jiahao Zhang, Shiheng Zhang, Jie Shen, Guang Lin:
Energy-dissipative evolutionary deep operator neural networks. J. Comput. Phys. 498: 112638 (2024) - [j101]Haoyang Zheng, Yao Huang, Ziyang Huang, Wenrui Hao, Guang Lin:
HomPINNs: Homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. J. Comput. Phys. 500: 112751 (2024) - [j100]Na Ou, Zecheng Zhang, Guang Lin:
A replica exchange preconditioned Crank-Nicolson Langevin dynamic MCMC method with multi-variance strategy for Bayesian inverse problems. J. Comput. Phys. 510: 113067 (2024) - [c25]Wenjie Li, Qifan Song, Jean Honorio, Guang Lin:
Federated X-armed Bandit. AAAI 2024: 13628-13636 - [c24]Jinwon Sohn, Qifan Song, Guang Lin:
Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes. AISTATS 2024: 1594-1602 - [c23]Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin:
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo. AISTATS 2024: 2611-2619 - [c22]Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, Qibin Zhao:
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization. ICLR 2024 - [c21]Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, Guang Lin:
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics. ICML 2024 - [i73]Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin:
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo. CoRR abs/2401.11665 (2024) - [i72]Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, Qibin Zhao:
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization. CoRR abs/2401.16352 (2024) - [i71]Christian Moya, Amirhossein Mollaali, Zecheng Zhang, Lu Lu, Guang Lin:
Conformalized-DeepONet: A Distribution-Free Framework for Uncertainty Quantification in Deep Operator Networks. CoRR abs/2402.15406 (2024) - [i70]Guang Lin, Zerui Tao, Jianhai Zhang, Toshihisa Tanaka, Qibin Zhao:
Robust Diffusion Models for Adversarial Purification. CoRR abs/2403.16067 (2024) - [i69]Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, Guang Lin:
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics. CoRR abs/2405.07839 (2024) - [i68]Guang Lin, Qibin Zhao:
Large Language Model Sentinel: Advancing Adversarial Robustness by LLM Agent. CoRR abs/2405.20770 (2024) - [i67]Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, Guang Lin:
Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory. CoRR abs/2407.06935 (2024) - 2023
- [j99]Binghang Lu, Christian Moya, Guang Lin:
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training. Algorithms 16(4): 194 (2023) - [j98]Guang Lin, Christian Moya, Zecheng Zhang:
Learning the dynamical response of nonlinear non-autonomous dynamical systems with deep operator neural networks. Eng. Appl. Artif. Intell. 125: 106689 (2023) - [j97]Christian Moya, Shiqi Zhang, Guang Lin, Meng Yue:
DeepONet-grid-UQ: A trustworthy deep operator framework for predicting the power grid's post-fault trajectories. Neurocomputing 535: 166-182 (2023) - [j96]Yan Xiang, Yu-Hang Tang, Guang Lin, Daniel Reker:
Interpretable Molecular Property Predictions Using Marginalized Graph Kernels. J. Chem. Inf. Model. 63(15): 4633-4640 (2023) - [j95]Yan Xiang, Yu-Hang Tang, Zheng Gong, Hongyi Liu, Liang Wu, Guang Lin, Huai Sun:
Efficient Exploration of Chemical Compound Space Using Active Learning for Prediction of Thermodynamic Properties of Alkane Molecules. J. Chem. Inf. Model. 63(21): 6515-6524 (2023) - [j94]Christian Moya, Guang Lin:
Bayesian, Multifidelity Operator Learning for Complex Engineering Systems-A Position Paper. J. Comput. Inf. Sci. Eng. 23(6) (2023) - [j93]Guang Lin, Christian Moya, Zecheng Zhang:
B-DeepONet: An enhanced Bayesian DeepONet for solving noisy parametric PDEs using accelerated replica exchange SGLD. J. Comput. Phys. 473: 111713 (2023) - [j92]Christian Moya, Guang Lin:
DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks. Neural Comput. Appl. 35(5): 3789-3804 (2023) - [j91]Yixuan Sun, Christian Moya, Guang Lin, Meng Yue:
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-Shot Transfer the Dynamic Response of Networked Systems. IEEE Syst. J. 17(3): 4360-4370 (2023) - [j90]Xinchao Liu, Xiao Liu, Tulin Kaman, Xiaohua Lu, Guang Lin:
Statistical Learning for Nonlinear Dynamical Systems with Applications to Aircraft-UAV Collisions. Technometrics 65(4): 564-578 (2023) - [j89]Chi-Hua Wang, Wenjie Li, Guang Lin:
Federated High-Dimensional Online Decision Making. Trans. Mach. Learn. Res. 2023 (2023) - [c20]Wei Deng, Qian Zhang, Qi Feng, Faming Liang, Guang Lin:
Non-reversible Parallel Tempering for Deep Posterior Approximation. AAAI 2023: 7332-7339 - [i66]Guanxun Li, Guang Lin, Zecheng Zhang, Quan Zhou:
Fast Replica Exchange Stochastic Gradient Langevin Dynamics. CoRR abs/2301.01898 (2023) - [i65]Christian Moya, Guang Lin, Tianqiao Zhao, Meng Yue:
On Approximating the Dynamic Response of Synchronous Generators via Operator Learning: A Step Towards Building Deep Operator-based Power Grid Simulators. CoRR abs/2301.12538 (2023) - [i64]Binghang Lu, Christian B. Moya, Guang Lin:
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training. CoRR abs/2303.02219 (2023) - [i63]Haoyang Zheng, Yao Huang, Ziyang Huang, Wenrui Hao, Guang Lin:
HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. CoRR abs/2304.02811 (2023) - [i62]Guihong Wang, Yuqing Li, Tao Luo, Zheng Ma, Nung Kwan Yip, Guang Lin:
Numerical Stability for Differential Equations with Memory. CoRR abs/2305.06571 (2023) - [i61]Izzet Sahin, Christian Moya, Amirhossein Mollaali, Guang Lin, Guillermo Paniagua:
Deep Operator Learning-based Surrogate Models with Uncertainty Quantification for Optimizing Internal Cooling Channel Rib Profiles. CoRR abs/2306.00810 (2023) - [i60]Jiahao Zhang, Shiheng Zhang, Jie Shen, Guang Lin:
Energy-Dissipative Evolutionary Deep Operator Neural Networks. CoRR abs/2306.06281 (2023) - [i59]Guang Lin, Jianhai Zhang:
Multi-Subdomain Adversarial Network for Cross-Subject EEG-based Emotion Recognition. CoRR abs/2308.14059 (2023) - [i58]Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer:
Bayesian deep operator learning for homogenized to fine-scale maps for multiscale PDE. CoRR abs/2308.14188 (2023) - [i57]Shiheng Zhang, Jiahao Zhang, Jie Shen, Guang Lin:
An Element-wise RSAV Algorithm for Unconstrained Optimization Problems. CoRR abs/2309.04013 (2023) - [i56]Guang Lin, Na Ou, Zecheng Zhang, Zhidong Zhang:
Restoring the Discontinuous Heat Equation Source Using Sparse Boundary Data and Dynamic Sensors. CoRR abs/2310.01541 (2023) - [i55]Yikai Liu, Ming Chen, Guang Lin:
Backdiff: a diffusion model for generalized transferable protein backmapping. CoRR abs/2310.01768 (2023) - [i54]Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin, Hayden Schaeffer:
D2NO: Efficient Handling of Heterogeneous Input Function Spaces with Distributed Deep Neural Operators. CoRR abs/2310.18888 (2023) - [i53]Amirhossein Mollaali, Izzet Sahin, Iqrar Raza, Christian Moya, Guillermo Paniagua, Guang Lin:
A Physics-Guided Bi-Fidelity Fourier-Featured Operator Learning Framework for Predicting Time Evolution of Drag and Lift Coefficients. CoRR abs/2311.03639 (2023) - [i52]Jinwon Sohn, Qifan Song, Guang Lin:
Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes. CoRR abs/2311.05866 (2023) - [i51]Zhihao Kong, Amirhossein Mollaali, Christian Moya, Na Lu, Guang Lin:
B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the Response of Complex Dynamical Systems to Length-Variant Multiple Input Functions. CoRR abs/2311.16519 (2023) - [i50]Yikai Liu, Tushar K. Ghosh, Guang Lin, Ming Chen:
Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface with Deep Generative Model. CoRR abs/2312.09404 (2023) - 2022
- [j88]Christian Moya, Guang Lin:
Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks. Algorithms 15(9): 325 (2022) - [j87]Yao Huang, Wenrui Hao, Guang Lin:
HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations. Comput. Math. Appl. 121: 62-73 (2022) - [j86]Georgios Karagiannis, Zhangshuan Hou, Maoyi Huang, Guang Lin:
Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework. Comput. 10(5): 72 (2022) - [j85]Shruthi Suresh, David T. Newton, Thomas H. Everett, Guang Lin, Bradley S. Duerstock:
Feature Selection Techniques for a Machine Learning Model to Detect Autonomic Dysreflexia. Frontiers Neuroinformatics 16 (2022) - [j84]Suman Chakraborty, Yixuan Sun, Guang Lin, Li Qiao:
Vapor-liquid equilibrium estimation of n-alkane/nitrogen mixtures using neural networks. J. Comput. Appl. Math. 408: 114059 (2022) - [j83]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative Phase-Field method for multiphase incompressible flows. J. Comput. Appl. Math. 408: 114116 (2022) - [j82]Dongwu Wang, Bin Zheng, Long Chen, Guang Lin, Jinchao Xu:
Block triangular preconditioning for stochastic Galerkin method. J. Comput. Appl. Math. 412: 114298 (2022) - [j81]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative Phase-Field model for thermo-gas-liquid-solid flows including liquid-solid phase change. J. Comput. Phys. 449: 110795 (2022) - [j80]Guang Lin, Yating Wang, Zecheng Zhang:
Multi-variance replica exchange SGMCMC for inverse and forward problems via Bayesian PINN. J. Comput. Phys. 460: 111173 (2022) - [j79]Liyao Gao, Yifan Du, Hongshan Li, Guang Lin:
RotEqNet: Rotation-equivariant network for fluid systems with symmetric high-order tensors. J. Comput. Phys. 461: 111205 (2022) - [j78]Yalchin Efendiev, Wing Tat Leung, Guang Lin, Zecheng Zhang:
Efficient hybrid explicit-implicit learning for multiscale problems. J. Comput. Phys. 467: 111326 (2022) - [j77]Hugo Esquivel, Arun Prakash, Guang Lin:
Multi-element flow-driven spectral chaos (ME-FSC) method for uncertainty quantification of dynamical systems. J. Comput. Phys. 467: 111425 (2022) - [j76]Wing Tat Leung, Guang Lin, Zecheng Zhang:
NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems. J. Comput. Phys. 470: 111539 (2022) - [j75]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
Implementing contact angle boundary conditions for second-order Phase-Field models of wall-bounded multiphase flows. J. Comput. Phys. 471: 111619 (2022) - [j74]Yating Wang, Wing Tat Leung, Guang Lin:
AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems. Multiscale Model. Simul. 20(1): 618-640 (2022) - [j73]Haoyang Zheng, Jeffrey R. Petrella, P. Murali Doraiswamy, Guang Lin, Wenrui Hao:
Data-driven causal model discovery and personalized prediction in Alzheimer's disease. npj Digit. Medicine 5 (2022) - [j72]Wei Deng, Guang Lin, Faming Liang:
An adaptively weighted stochastic gradient MCMC algorithm for Monte Carlo simulation and global optimization. Stat. Comput. 32(4): 58 (2022) - [j71]Liyao Gao, Guang Lin, Wei Zhu:
Deformation Robust Roto-Scale-Translation Equivariant CNNs. Trans. Mach. Learn. Res. 2022 (2022) - [j70]Tehuan Chen, Zhigang Ren, Guang Lin, Chao Xu:
Learning-PDE-Based Approximate Optimal Control for an MHD System With Uncertainty Quantification. IEEE Trans. Syst. Man Cybern. Syst. 52(11): 7185-7192 (2022) - [c19]Carson Hu, Guang Lin, Bao Wang, Meng Yue, Jack Xin:
Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling. AI4I 2022: 35-37 - [c18]Yunling Zheng, Carson Hu, Guang Lin, Meng Yue, Bao Wang, Jack Xin:
Glassoformer: A Query-Sparse Transformer for Post-Fault Power Grid Voltage Prediction. ICASSP 2022: 3968-3972 - [c17]Wei Deng, Siqi Liang, Botao Hao, Guang Lin, Faming Liang:
Interacting Contour Stochastic Gradient Langevin Dynamics. ICLR 2022 - [i49]Yunling Zheng, Carson Hu, Guang Lin, Meng Yue, Bao Wang, Jack Xin:
glassoformer: a query-sparse transformer for post-fault power grid voltage prediction. CoRR abs/2201.09145 (2022) - [i48]Christian Moya, Shiqi Zhang, Meng Yue, Guang Lin:
DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid's Post-Fault Trajectories. CoRR abs/2202.07176 (2022) - [i47]Wei Deng, Siqi Liang, Botao Hao, Guang Lin, Faming Liang:
Interacting Contour Stochastic Gradient Langevin Dynamics. CoRR abs/2202.09867 (2022) - [i46]Jiahao Zhang, Shiqi Zhang, Guang Lin:
PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations. CoRR abs/2204.02583 (2022) - [i45]Jiahao Zhang, Shiqi Zhang, Guang Lin:
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems. CoRR abs/2204.03193 (2022) - [i44]Jiahao Zhang, Shiqi Zhang, Guang Lin:
RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction for High-dimensional Uncertainty Quantification. CoRR abs/2204.04819 (2022) - [i43]Sheng Zhang, Guang Lin, Samy Tindel:
2-d signature of images and texture classification. CoRR abs/2205.11236 (2022) - [i42]Wenjie Li, Qifan Song, Jean Honorio, Guang Lin:
Federated X-Armed Bandit. CoRR abs/2205.15268 (2022) - [i41]Hugo Esquivel, Arun Prakash, Guang Lin:
Multi-element flow-driven spectral chaos (ME-FSC) method for uncertainty quantification of dynamical systems. CoRR abs/2207.10281 (2022) - [i40]Yating Wang, Wing Tat Leung, Guang Lin:
AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems. CoRR abs/2207.11735 (2022) - [i39]Yan Xiang, Yu-Hang Tang, Zheng Gong, Hongyi Liu, Liang Wu, Guang Lin, Huai Sun:
Efficient Chemical Space Exploration Using Active Learning Based on Marginalized Graph Kernel: an Application for Predicting the Thermodynamic Properties of Alkanes with Molecular Simulation. CoRR abs/2209.00514 (2022) - [i38]Yixuan Sun, Christian Moya, Guang Lin, Meng Yue:
DeepGraphONet: A Deep Graph Operator Network to Learn and Zero-shot Transfer the Dynamic Response of Networked Systems. CoRR abs/2209.10622 (2022) - [i37]Na Ou, Zecheng Zhang, Guang Lin:
A replica exchange preconditioned Crank-Nicolson Langevin dynamic MCMC method for Bayesian inverse problems. CoRR abs/2210.17048 (2022) - [i36]Wei Deng, Qian Zhang, Qi Feng, Faming Liang, Guang Lin:
Non-reversible Parallel Tempering for Deep Posterior Approximation. CoRR abs/2211.10837 (2022) - 2021
- [j69]Shichao Zhou, Guang Lin, Qinfang Qian, Chao Xu:
Binary classification of floor vibrations for human activity detection based on dynamic mode decomposition. Neurocomputing 432: 227-239 (2021) - [j68]Jun Man, Guang Lin, Yijun Yao, Lingzao Zeng:
A generalized multi-fidelity simulation method using sparse polynomial chaos expansion. J. Comput. Appl. Math. 397: 113613 (2021) - [j67]Hugo Esquivel, Arun Prakash, Guang Lin:
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. J. Comput. Appl. Math. 398: 113674 (2021) - [j66]Yan Xiang, Yu-Hang Tang, Guang Lin, Huai Sun:
A Comparative Study of Marginalized Graph Kernel and Message-Passing Neural Network. J. Chem. Inf. Model. 61(11): 5414-5424 (2021) - [j65]Sheng Zhang, Guang Lin:
SubTSBR to tackle high noise and outliers for data-driven discovery of differential equations. J. Comput. Phys. 428: 109962 (2021) - [j64]Yuepeng Wang, Xuemei Ding, Kun Hu, Fangxin Fang, I. M. Navon, Guang Lin:
Feasibility of DEIM for retrieving the initial field via dimensionality reduction. J. Comput. Phys. 429: 110005 (2021) - [j63]Hugo Esquivel, Arun Prakash, Guang Lin:
Flow-driven spectral chaos (FSC) method for simulating long-time dynamics of arbitrary-order non-linear stochastic dynamical systems. J. Comput. Phys. 430: 110044 (2021) - [j62]Yating Wang, Wei Deng, Guang Lin:
Bayesian sparse learning with preconditioned stochastic gradient MCMC and its applications. J. Comput. Phys. 432: 110134 (2021) - [j61]Yating Wang, Wei Deng, Guang Lin:
An adaptive Hessian approximated stochastic gradient MCMC method. J. Comput. Phys. 432: 110150 (2021) - [j60]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative model and its scheme for N-phase-M-component incompressible flows. J. Comput. Phys. 434: 110229 (2021) - [j59]Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Zhen Zhang, Guang Lin, George Em Karniadakis:
Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nat. Comput. Sci. 1(11): 744-753 (2021) - [j58]Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George E. Karniadakis:
An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Comput. Biol. 17(9) (2021) - [j57]Hui Huang, Jianhai Zhang, Li Zhu, Jiajia Tang, Guang Lin, Wanzeng Kong, Xu Lei, Lei Zhu:
EEG-Based Sleep Staging Analysis with Functional Connectivity. Sensors 21(6): 1988 (2021) - [j56]Jiuhai Chen, Lulu Kang, Guang Lin:
Gaussian Process Assisted Active Learning of Physical Laws. Technometrics 63(3): 329-342 (2021) - [c16]Guang Lin, Li Zhu, Bin Ren, Yiteng Hu, Jianhai Zhang:
Multi-Branch Network for Cross-Subject EEG-based Emotion Recognition. ACML 2021: 705-720 - [c15]Lang Hu, Li Zhu, Hui Huang, Guang Lin, Bin Ren, Jianhai Zhang:
Speaker recognition with voice evoked EEG. BIBM 2021: 2231-2236 - [c14]Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, Faming Liang:
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction. ICLR 2021 - [c13]Yuexiang Li, Yanping Wang, Guang Lin, Yi Lin, Dong Wei, Qirui Zhang, Kai Ma, Guangming Lu, Zhiqiang Zhang, Yefeng Zheng:
Triplet-Branch Network with Prior-Knowledge Embedding for Fatigue Fracture Grading. MICCAI (5) 2021: 449-458 - [c12]Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, Guang Lin:
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving. WSDM 2021: 922-930 - [i35]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative model and its scheme for N-phase-M-component incompressible flows. CoRR abs/2101.04252 (2021) - [i34]Aoxue Chen, Guang Lin:
Robust data-driven discovery of partial differential equations with time-dependent coefficients. CoRR abs/2102.01432 (2021) - [i33]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
A consistent and conservative Phase-Field model for thermo-gas-liquid-solid flows including liquid-solid phase change. CoRR abs/2102.06863 (2021) - [i32]Ziyang Huang, Guang Lin, Arezoo Motavalizadeh Ardekani:
Implementing contact angle boundary conditions for second-order Phase-Field models of wall-bounded multiphase flows. CoRR abs/2103.07839 (2021) - [i31]Hugo Esquivel, Arun Prakash, Guang Lin:
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. CoRR abs/2105.10544 (2021) - [i30]Guang Lin, Yating Wang, Zecheng Zhang:
Multi-variance replica exchange stochastic gradient MCMC for inverse and forward Bayesian physics-informed neural network. CoRR abs/2107.06330 (2021) - [i29]Wing Tat Leung, Guang Lin, Zecheng Zhang:
NH-PINN: Neural homogenization based physics-informed neural network for multiscale problems. CoRR abs/2108.12942 (2021) - [i28]Yalchin Efendiev, Wing Tat Leung, Guang Lin, Zecheng Zhang:
HEI: hybrid explicit-implicit learning for multiscale problems. CoRR abs/2109.02147 (2021) - [i27]Christian Moya, Guang Lin:
DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential-Algebraic Equations with Application to Power Networks. CoRR abs/2109.04304 (2021) - [i26]Haoyang Zheng, Ziyang Huang, Guang Lin:
PCNN: A physics-constrained neural network for multiphase flows. CoRR abs/2109.08965 (2021) - [i25]