default search action
Nicholas S. Szczecinski
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i1]Trevor R. Smith, Thomas J. Smith, Nicholas S. Szczecinski, Sergiy Yakovenko, Yu Gu:
Cellular Plasticity Model for Bottom-Up Robotic Design. CoRR abs/2408.05604 (2024) - 2023
- [j12]William P. Zyhowski, Sasha N. Zill, Nicholas S. Szczecinski:
Adaptive load feedback robustly signals force dynamics in robotic model of Carausius morosus stepping. Frontiers Neurorobotics 17 (2023) - [j11]Nicholas S. Szczecinski, Clarissa A. Goldsmith, William Nourse, Roger D. Quinn:
A perspective on the neuromorphic control of legged locomotion in past, present, and future insect-like robots. Neuromorph. Comput. Eng. 3(2): 23001 (2023) - [c36]Isabella Kudyba, Nicholas S. Szczecinski:
Model Reveals Joint Properties for Which Co-contracting Antagonist Muscles Increases Joint Stiffness. Living Machines (2) 2023: 3-19 - [c35]Evan Aronhalt, Eabha Abramson, Clarus A. Goldsmith, Emanuel Andrada, William Nourse, Gregory P. Sutton, Nicholas S. Szczecinski, Roger D. Quinn:
Development of a Robotic Rat Hindlimb Model. Living Machines (2) 2023: 115-130 - [c34]William Nourse, Nicholas S. Szczecinski, Roger D. Quinn:
A Synthetic Nervous System for on and Off Motion Detection Inspired by the Drosophila melanogaster Optic Lobe. Living Machines (1) 2023: 364-380 - [c33]Gesa F. Dinges, William P. Zyhowski, Clarissa A. Goldsmith, Nicholas S. Szczecinski:
Comparison of Proximal Leg Strain in Locomotor Model Organisms Using Robotic Legs. Living Machines (1) 2023: 411-427 - [c32]Clarus A. Goldsmith, William P. Zyhowski, Ansgar Büschges, Sasha N. Zill, Gesa F. Dinges, Nicholas S. Szczecinski:
Effects of Tarsal Morphology on Load Feedback During Stepping of a Robotic Stick Insect (Carausius Morosus) Limb. Living Machines (1) 2023: 442-457 - 2022
- [c31]William Nourse, Nicholas S. Szczecinski, Roger D. Quinn:
SNS-Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems. Living Machines 2022: 32-43 - [c30]Clarissa A. Goldsmith, Moritz Haustein, Till Bockemühl, Ansgar Büschges, Nicholas S. Szczecinski:
Analyzing 3D Limb Kinematics of Drosophila Melanogaster for Robotic Platform Development. Living Machines 2022: 111-122 - [c29]William P. Zyhowski, Sasha N. Zill, Nicholas S. Szczecinski:
Load Feedback from a Dynamically Scaled Robotic Model of Carausius Morosus Middle Leg. Living Machines 2022: 128-139 - [c28]Shamil S. Patel, Jenny C. A. Read, Vivek Nityananda, Nicholas S. Szczecinski:
Robotic Platform for Testing a Simple Stereopsis Network. Living Machines 2022: 195-198 - [c27]Chloe K. Guie, Nicholas S. Szczecinski:
Direct Assembly and Tuning of Dynamical Neural Networks for Kinematics. Living Machines 2022: 321-331 - 2021
- [j10]Shanel C. Pickard, David J. Bertsch, Zoe Le Garrec, Roy E. Ritzmann, Roger D. Quinn, Nicholas S. Szczecinski:
Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis). PLoS Comput. Biol. 17(12) (2021) - 2020
- [j9]Mantas Naris, Nicholas S. Szczecinski, Roger D. Quinn:
A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion. Biol. Cybern. 114(1): 23-41 (2020) - [j8]Nicholas S. Szczecinski, Roger D. Quinn, Alexander J. Hunt:
Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model. Frontiers Neurorobotics 14: 577804 (2020) - [c26]Kaiyu Deng, Nicholas S. Szczecinski, Alexander J. Hunt, Hillel J. Chiel, Roger D. Quinn:
Kinematic and Kinetic Analysis of a Biomechanical Model of Rat Hind Limb with Biarticular Muscles. Living Machines 2020: 55-67 - [c25]Marshaun N. Fitzpatrick, Yangyang Wang, Peter J. Thomas, Roger D. Quinn, Nicholas S. Szczecinski:
Robotics Application of a Method for Analytically Computing Infinitesimal Phase Response Curves. Living Machines 2020: 104-115 - [c24]Clarissa A. Goldsmith, Nicholas S. Szczecinski, Roger D. Quinn:
Response of a Neuromechanical Insect Joint Model to Inhibition of fCO Sensory Afferents. Living Machines 2020: 141-152 - [c23]Anna Sedlackova, Nicholas S. Szczecinski, Roger D. Quinn:
A Synthetic Nervous System Model of the Insect Optomotor Response. Living Machines 2020: 312-324 - [c22]Nicholas S. Szczecinski, Sasha N. Zill, Chris J. Dallmann, Roger D. Quinn:
Modeling the Dynamic Sensory Discharges of Insect Campaniform Sensilla. Living Machines 2020: 342-353
2010 – 2019
- 2019
- [j7]Wade W. Hilts, Nicholas S. Szczecinski, Roger D. Quinn, Alexander J. Hunt:
A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar to an Analogous Classical Controller. IEEE Control. Syst. Lett. 3(2): 320-325 (2019) - [c21]Clarissa A. Goldsmith, Nicholas S. Szczecinski, Roger D. Quinn:
Drosophibot: A Fruit Fly Inspired Bio-Robot. Living Machines 2019: 146-157 - [c20]Nicholas S. Szczecinski, Clarissa A. Goldsmith, Fletcher R. Young, Roger D. Quinn:
Tuning a Robot Servomotor to Exhibit Muscle-Like Dynamics. Living Machines 2019: 254-265 - [c19]William Nourse, Nicholas S. Szczecinski, Moritz Haustein, Till Bockemühl, Ansgar Büschges, Roger D. Quinn:
Analyzing the Interplay Between Local CPG Activity and Sensory Signals for Inter-leg Coordination in Drosophila. Living Machines 2019: 342-345 - 2018
- [j6]Nicholas S. Szczecinski, Roger D. Quinn:
Leg-local neural mechanisms for searching and learning enhance robotic locomotion. Biol. Cybern. 112(1-2): 99-112 (2018) - [c18]Drago Bracun, Nicholas S. Szczecinski, Gasper Skulj, Alexander J. Hunt, Roger D. Quinn:
Artificial Compound Eye and Synthetic Neural System for Motion Recognition. Living Machines 2018: 52-63 - [c17]Kaiyu Deng, Nicholas S. Szczecinski, Dirk Arnold, Emanuel Andrada, Martin S. Fischer, Roger D. Quinn, Alexander J. Hunt:
Neuromechanical Model of Rat Hind Limb Walking with Two Layer CPGs and Muscle Synergies. Living Machines 2018: 134-144 - [c16]Wade W. Hilts, Nicholas S. Szczecinski, Roger D. Quinn, Alexander J. Hunt:
Emulating Balance Control Observed in Human Test Subjects with a Neural Network. Living Machines 2018: 200-212 - [c15]William Nourse, Roger D. Quinn, Nicholas S. Szczecinski:
An Adaptive Frequency Central Pattern Generator for Synthetic Nervous Systems. Living Machines 2018: 361-364 - [c14]Shanel C. Pickard, Roger D. Quinn, Nicholas S. Szczecinski:
Simulation of the Arthropod Central Complex: Moving Towards Bioinspired Robotic Navigation Control. Living Machines 2018: 370-381 - [c13]Nicholas S. Szczecinski, Ansgar Büschges, Till Bockemühl:
Direction-Specific Footpaths Can Be Predicted by the Motion of a Single Point on the Body of the Fruit Fly Drosophila Melanogaster. Living Machines 2018: 477-489 - 2017
- [j5]Nicholas S. Szczecinski, Alexander Jacob Hunt, Roger D. Quinn:
Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1): 105-127 (2017) - [j4]Alexander Jacob Hunt, Nicholas S. Szczecinski, Roger D. Quinn:
Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot. Frontiers Neurorobotics 11: 18 (2017) - [j3]Nicholas S. Szczecinski, Alexander J. Hunt, Roger D. Quinn:
A Functional Subnetwork Approach to Designing Synthetic Nervous Systems That Control Legged Robot Locomotion. Frontiers Neurorobotics 11: 37 (2017) - [c12]Wade W. Hilts, Nicholas S. Szczecinski, Roger D. Quinn, Alexander Jacob Hunt:
Simulation of Human Balance Control Using an Inverted Pendulum Model. Living Machines 2017: 170-180 - [c11]Nicholas S. Szczecinski, Roger D. Quinn:
MantisBot Changes Stepping Speed by Entraining CPGs to Positive Velocity Feedback. Living Machines 2017: 440-452 - [c10]Anna Sedlackova, Nicholas S. Szczecinski, Roger D. Quinn:
Binocular Vision Using Synthetic Nervous Systems. Living Machines 2017: 619-625 - 2016
- [c9]Wei Li, Nicholas S. Szczecinski, Alexander Jacob Hunt, Roger D. Quinn:
A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model. Living Machines 2016: 144-154 - [c8]Nicholas S. Szczecinski, Andrew P. Getsy, Jacob W. Bosse, Joshua P. Martin, Roy E. Ritzmann, Roger D. Quinn:
MantisBot Uses Minimal Descending Commands to Pursue Prey as Observed in Tenodera Sinensis. Living Machines 2016: 329-340 - [c7]Andrew P. Getsy, Nicholas S. Szczecinski, Roger D. Quinn:
MantisBot: The Implementation of a Photonic Vision System. Living Machines 2016: 429-435 - 2015
- [c6]Nicholas S. Szczecinski, David M. Chrzanowski, David W. Cofer, Andrea S. Terrasi, David R. Moore, Joshua P. Martin, Roy E. Ritzmann, Roger D. Quinn:
Introducing MantisBot: Hexapod robot controlled by a high-fidelity, real-time neural simulation. IROS 2015: 3875-3881 - [c5]Nicholas S. Szczecinski, David M. Chrzanowski, David W. Cofer, David R. Moore, Andrea S. Terrasi, Joshua P. Martin, Roy E. Ritzmann, Roger D. Quinn:
MantisBot: A Platform for Investigating Mantis Behavior via Real-Time Neural Control. Living Machines 2015: 175-186 - [c4]Alexander Jacob Hunt, Nicholas S. Szczecinski, Emanuel Andrada, Martin S. Fischer, Roger D. Quinn:
Using Animal Data and Neural Dynamics to Reverse Engineer a Neuromechanical Rat Model. Living Machines 2015: 211-222 - 2014
- [j2]Nicholas S. Szczecinski, Amy E. Brown, John A. Bender, Roger D. Quinn, Roy E. Ritzmann:
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 108(1): 1-21 (2014) - [c3]Matthew A. Klein, Nicholas S. Szczecinski, Roy E. Ritzmann, Roger D. Quinn:
Simulated Neural Dynamics Produces Adaptive Stepping and Stable Transitions in a Robotic Leg. Living Machines 2014: 166-177 - [c2]Nicholas S. Szczecinski, Joshua P. Martin, Roy E. Ritzmann, Roger D. Quinn:
Neuromechanical Mantis Model Replicates Animal Postures via Biological Neural Models. Living Machines 2014: 296-307 - 2013
- [j1]Kathryn A. Daltorio, Brian R. Tietz, John A. Bender, Victoria A. Webster, Nicholas S. Szczecinski, Michael S. Branicky, Roy E. Ritzmann, Roger D. Quinn:
A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adapt. Behav. 21(5): 404-420 (2013) - 2012
- [c1]Kathryn A. Daltorio, Brian R. Tietz, John A. Bender, Victoria A. Webster, Nicholas S. Szczecinski, Michael S. Branicky, Roy E. Ritzmann, Roger D. Quinn:
A stochastic algorithm for explorative goal seeking extracted from cockroach walking data. ICRA 2012: 2261-2268
Coauthor Index
aka: Alexander Jacob Hunt
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:22 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint