


Остановите войну!
for scientists:


default search action
Machine Learning: Science and Technology, Volume 2
Volume 2, Number 1, March 2021
- Pascal Friederich
, Salvador León
, José Darío Perea
, Loïc M. Roch, Alán Aspuru-Guzik:
The influence of sorbitol doping on aggregation and electronic properties of PEDOT: PSS: a theoretical study. 01 - Tobias Haug
, Wai-Keong Mok
, Jia-Bin You, Wenzu Zhang
, Ching Eng Png, Leong-Chuan Kwek:
Classifying global state preparation via deep reinforcement learning. 01 - Salman Ahmadi-Asl
, Andrzej Cichocki, Anh Huy Phan, Maame G. Asante-Mensah, Mirfarid Musavian Ghazani, Toshihisa Tanaka, Ivan V. Oseledets:
Randomized algorithms for fast computation of low rank tensor ring model. 11001 - Elena Cuoco
, Jade Powell
, Marco Cavaglià
, Kendall Ackley
, Michal Bejger
, Chayan Chatterjee
, Michael Coughlin, Scott Coughlin, Paul Easter
, Reed Essick
, Hunter Gabbard, Timothy Gebhard
, Shaon Ghosh, Leïla Haegel, Alberto Iess
, David Keitel
, Zsuzsa Márka, Szabolcs Márka, Filip Morawski
, Tri Nguyen, Rich Ormiston, Michael Pürrer, Massimiliano Razzano
, Kai Staats, Gabriele Vajente, Daniel Williams:
Enhancing gravitational-wave science with machine learning. 11002 - Wen Guan, Gabriel N. Perdue
, Arthur Pesah
, Maria Schuld
, Koji Terashi
, Sofia Vallecorsa
, Jean-Roch Vlimant
:
Quantum machine learning in high energy physics. 11003 - Jeffrey M. Ede
:
Deep learning in electron microscopy. 11004 - Stuart I. Campbell
, Daniel B. Allan
, Andi M. Barbour
, Daniel Olds
, Maksim S. Rakitin
, Reid Smith
, Stuart B. Wilkins
:
Outlook for artificial intelligence and machine learning at the NSLS-II. 13001 - Jennifer Ngadiuba
, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Giuseppe Di Guglielmo, Javier M. Duarte
, Philip C. Harris, Dylan S. Rankin
, Sergo Jindariani, Mia Liu, Kevin Pedro, Nhan Tran, Edward Kreinar, Sheila Sagear, Zhenbin Wu, Duc Hoang:
Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml. 15001 - João Caldeira
, Brian Nord
:
Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms. 15002 - Harbir Antil
, Ratna Khatri
, Rainald Löhner, Deepanshu Verma:
Fractional deep neural network via constrained optimization. 15003 - Reed Essick
, Patrick Godwin, Chad Hanna, Lindy Blackburn, Erik Katsavounidis:
iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors. 15004 - Arnab Bhadra
, Kalidas Yeturu
:
Site2Vec: a reference frame invariant algorithm for vector embedding of protein-ligand binding sites. 15005 - Dmitri Ivanov, Oleg E. Kalashev
, Mikhail Yu Kuznetsov
, Grigory I. Rubtsov, Takashi Sako, Yoshiki Tsunesada
, Yana V. Zhezher:
Using deep learning to enhance event geometry reconstruction for the telescope array surface detector. 15006 - Xiao Liang
, Dan Nguyen
, Steve B. Jiang:
Generalizability issues with deep learning models in medicine and their potential solutions: illustrated with cone-beam computed tomography (CBCT) to computed tomography (CT) image conversion. 15007 - Lucien Hardy, Adam G. M. Lewis
:
Quantum computation with machine-learning-controlled quantum stuff. 15008 - Cory B. Scott
, Eric Mjolsness
:
Graph prolongation convolutional networks: explicitly multiscale machine learning on graphs with applications to modeling of cytoskeleton. 15009 - Sven Krippendorf
, Marc Syvaeri:
Detecting symmetries with neural networks. 15010 - Lee J. O'Riordan
, Myles Doyle
, Fabio Baruffa, Venkatesh Kannan:
A hybrid classical-quantum workflow for natural language processing. 15011 - Marinus J. Lagerwerf
, Allard A. Hendriksen, Jan-Willem Buurlage
, Kees Joost Batenburg:
Noise2Filter: fast, self-supervised learning and real-time reconstruction for 3D computed tomography. 15012 - Gal Gilad
, Itay Sason, Roded Sharan:
An automated approach for determining the number of components in non-negative matrix factorization with application to mutational signature learning. 15013 - Zhe Zhang
, Minghao Song
, Xiaobiao Huang
:
Online accelerator optimization with a machine learning-based stochastic algorithm. 15014 - Steff Farley
, Jo E. A. Hodgkinson, Oliver M. Gordon
, Joanna Turner, Andrea Soltoggio, Philip J. Moriarty
, Eugénie Hunsicker:
Improving the segmentation of scanning probe microscope images using convolutional neural networks. 15015 - Philippe Schwaller
, Alain C. Vaucher
, Teodoro Laino
, Jean-Louis Reymond
:
Prediction of chemical reaction yields using deep learning. 15016 - Chao Wu
, Dan Nguyen
, Yixun Xing, Ana M. Barragan-Montero
, Jan Schuemann
, Haijiao Shang, Yuehu Pu, Steve B. Jiang:
Improving proton dose calculation accuracy by using deep learning. 15017 - Behnam Parsaeifard
, Deb Sankar De, Anders S. Christensen, Felix A. Faber
, Emir Kocer
, Sandip De
, Jörg Behler, O. Anatole von Lilienfeld, Stefan Goedecker:
An assessment of the structural resolution of various fingerprints commonly used in machine learning. 15018 - Esben Jannik Bjerrum
, Amol Thakkar
, Ola Engkvist
:
Artificial applicability labels for improving policies in retrosynthesis prediction. 17001 - Pascal Pernot
, Bing Huang
, Andreas Savin:
Corrigendum: Impact of non-normal error distributions on the benchmarking and ranking of quantum machine learning models (2020 Mach. Learn.: Sci. Technol. 1 035011). 19501
Volume 2, Number 2, June 2021
- Tianchen Zhao, Giuseppe Carleo, James Stokes
, Shravan K. Veerapaneni
:
Natural evolution strategies and variational Monte Carlo. 02 - Kyle Sprague, Juan Carrasquilla, Stephen Whitelam, Isaac Tamblyn
:
Watch and learn - a generalized approach for transferrable learning in deep neural networks via physical principles. 02 - Harold Erbin
, Riccardo Finotello
:
Inception neural network for complete intersection Calabi-Yau 3-folds. 02 - Jonathan Shlomi
, Peter W. Battaglia
, Jean-Roch Vlimant
:
Graph neural networks in particle physics. 21001 - Mathieu Doucet
, Anjana M. Samarakoon, Changwoo Do, William T. Heller
, Richard Archibald
, D. Alan Tennant
, Thomas Proffen
, Garrett E. Granroth
:
Machine learning for neutron scattering at ORNL. 23001 - Nicholas Walker
, Ka-Ming Tam:
InfoCGAN classification of 2D square Ising configurations. 25001 - Ivan S. Novikov, Konstantin Gubaev
, Evgeny V. Podryabinkin, Alexander V. Shapeev
:
The MLIP package: moment tensor potentials with MPI and active learning. 25002 - Magali Benoit, Jonathan Amodeo, Ségolène Combettes, Ibrahim Khaled, Aurélien Roux, Julien Lam
:
Measuring transferability issues in machine-learning force fields: the example of gold-iron interactions with linearized potentials. 25003 - A. Rakotondrajoa, Martin Radtke
:
Machine learning based quantification of synchrotron radiation-induced x-ray fluorescence measurements - a case study. 25004 - Ryan Sweke
, Markus S. Kesselring, Evert P. L. van Nieuwenburg
, Jens Eisert:
Reinforcement learning decoders for fault-tolerant quantum computation. 25005 - Andreu Glasmann
, Alexandros Kyrtsos
, Enrico Bellotti:
Machine learning for analyzing and characterizing InAsSb-based nBn photodetectors. 25006 - Muhammed Shuaibi, Saurabh Sivakumar, Rui Qi Chen, Zachary W. Ulissi
:
Enabling robust offline active learning for machine learning potentials using simple physics-based priors. 25007 - Oleksandr Balabanov
, Mats Granath
:
Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands. 25008 - Dmitrii Beloborodov, Alexander E. Ulanov
, Jakob N. Foerster, Shimon Whiteson, A. I. Lvovsky:
Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization. 25009 - Sandeep Madireddy
, Ji Hwan Park, Sunwoo Lee
, Prasanna Balaprakash, Shinjae Yoo, Wei-keng Liao
, Cory D. Hauck, M. Paul Laiu, Richard Archibald
:
In situ compression artifact removal in scientific data using deep transfer learning and experience replay. 25010 - Jin-Guo Liu
, Liang Mao, Pan Zhang, Lei Wang:
Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits. 25011 - Haozhu Wang
, Zeyu Zheng, Chengang Ji, L. Jay Guo
:
Automated multi-layer optical design via deep reinforcement learning. 25013 - Alexandr Ignatenko, Dameli Assalauova, Sergey A. Bobkov, Luca Gelisio, Anton B. Teslyuk, Viacheslav A. Ilyin, Ivan A. Vartanyants
:
Classification of diffraction patterns in single particle imaging experiments performed at x-ray free-electron lasers using a convolutional neural network. 25014 - Pake Melland
, Jason Albright
, Nathan M. Urban
:
Differentiable programming for online training of a neural artificial viscosity function within a staggered grid Lagrangian hydrodynamics scheme. 25015 - Sharon Zhou
, Jiequan Zhang, Hang Jiang, Torbjörn Lundh, Andrew Y. Ng:
Data augmentation with Mobius transformations. 25016 - Alice E. A. Allen
, Geneviève Dusson
, Christoph Ortner
, Gábor Csányi
:
Atomic permutationally invariant polynomials for fitting molecular force fields. 25017 - Francisco L. Giambelluca
, Marcelo A. Cappelletti
, Jorge Rafael Osio, Luis A. Giambelluca:
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques. 25018 - Pranath Reddy
, Aranya Bhuti Bhattacherjee
:
A hybrid quantum regression model for the prediction of molecular atomization energies. 25019 - Jonas Paccolat
, Stefano Spigler, Matthieu Wyart
:
How isotropic kernels perform on simple invariants. 25020 - Pavel V. Kolesnichenko
, Qianhui Zhang, Changxi Zheng, Michael S. Fuhrer
, Jeffrey A. Davis
:
Multidimensional analysis of excitonic spectra of monolayers of tungsten disulphide: toward computer-aided identification of structural and environmental perturbations of 2D materials. 25021 - Rohan Thavarajah
, Xiang Zhai, Zheren Ma, David Castineira:
Fast modeling and understanding fluid dynamics systems with encoder-decoder networks. 25022 - Rocío Mercado
, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming Chen, Esben Jannik Bjerrum
:
Graph networks for molecular design. 25023 - Jannis Born
, Matteo Manica
, Joris Cadow
, Greta Markert
, Nil Adell Mill
, Modestas Filipavicius, Nikita Janakarajan
, Antonio Cardinale, Teodoro Laino
, María Rodríguez Martínez
:
Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. 25024 - Phillip M. Maffettone
, Joshua K. Lynch
, Thomas A. Caswell
, Clara E. Cook
, Stuart I. Campbell
, Daniel Olds
:
Gaming the beamlines - employing reinforcement learning to maximize scientific outcomes at large-scale user facilities. 25025 - Alejandro Pozas-Kerstjens
, Gorka Muñoz-Gil
, Eloy Piñol
, Miguel Ángel García-March
, Antonio Acín
, Maciej Lewenstein
, Przemyslaw R. Grzybowski
:
Efficient training of energy-based models via spin-glass control. 25026 - Pascal Friederich
, Mario Krenn
, Isaac Tamblyn
, Alán Aspuru-Guzik
:
Scientific intuition inspired by machine learning-generated hypotheses. 25027 - Alexander Goscinski
, Guillaume Fraux
, Giulio Imbalzano, Michele Ceriotti
:
The role of feature space in atomistic learning. 25028 - Suraj Pawar
, Romit Maulik
:
Distributed deep reinforcement learning for simulation control. 25029 - Heesoo Park
, Adnan Ali
, Raghvendra Mall
, Halima Bensmail, Stefano Sanvito
, Fedwa El-Mellouhi
:
Data-driven enhancement of cubic phase stability in mixed-cation perovskites. 25030 - Singanallur V. Venkatakrishnan
, Amirkoushyar Ziabari
, Jacob D. Hinkle
, Andrew W. Needham
, Jeffrey M. Warren
, Hassina Z. Bilheux
:
Convolutional neural network based non-iterative reconstruction for accelerating neutron tomography. 25031 - Wenxiang Cong
, Yan Xi, Bruno De Man
, Ge Wang
:
Monochromatic image reconstruction via machine learning. 25032 - Ti Bai
, Biling Wang, Dan Nguyen
, Steve B. Jiang:
Deep dose plugin: towards real-time Monte Carlo dose calculation through a deep learning-based denoising algorithm. 25033 - Juan Manuel Carmona Loaiza
, Zamaan Raza:
Towards reflectivity profile inversion through artificial neural networks. 25034 - Sergei Gukov, James Halverson
, Fabian Ruehle
, Piotr Sulkowski:
Learning to unknot. 25035 - Howard Yanxon
, David Zagaceta, Binh Tang, David S. Matteson, Qiang Zhu
:
PyXtal_FF: a python library for automated force field generation. 27001
Volume 2, Number 3, September 2021
- Lisanne Knijff, Chao Zhang
:
Machine learning inference of molecular dipole moment in liquid water. 03 - Cynthia Shen
, Mario Krenn
, Sagi Eppel, Alán Aspuru-Guzik
:
Deep molecular dreaming: inverse machine learning for de-novo molecular design and interpretability with surjective representations. 03 - Mathieu Doucet
, Richard K. Archibald
, William T. Heller
:
Machine learning for neutron reflectometry data analysis of two-layer thin films. 35001 - James Halverson
, Anindita Maiti
, Keegan Stoner
:
Neural networks and quantum field theory. 35002 - Chunpeng Wang
, Feng Yu
, Yiyang Liu
, Xiaoyun Li
, Jige Chen
, Jeyan Thiyagalingam
, Alessandro Sepe
:
Deploying the Big Data Science Center at the Shanghai Synchrotron Radiation Facility: the first superfacility platform in China. 35003 - Frank Schäfer
, Pavel Sekatski
, Martin Koppenhöfer
, Christoph Bruder
, Michal Kloc
:
Control of stochastic quantum dynamics by differentiable programming. 35004 - Jeffrey D. Krupa
, Kelvin Lin
, Maria Acosta Flechas
, Jack Dinsmore
, Javier M. Duarte
, Philip C. Harris
, Scott Hauck
, Burt Holzman
, Shih-Chieh Hsu
, Thomas Klijnsma
, Mia Liu, Kevin Pedro
, Dylan S. Rankin
, Natchanon Suaysom, Matt Trahms
, Nhan Tran
:
GPU coprocessors as a service for deep learning inference in high energy physics. 35005 - Daniil Mironov, James H. Durant
, Rebecca Mackenzie, Joshaniel F. K. Cooper
:
Towards automated analysis for neutron reflectivity. 35006 - Laura Natali, Saga Helgadottir, Onofrio M. Maragò
, Giovanni Volpe
:
Improving epidemic testing and containment strategies using machine learning. 35007 - Maame G. Asante-Mensah
, Salman Ahmadi-Asl
, Andrzej Cichocki
:
Matrix and tensor completion using tensor ring decomposition with sparse representation. 35008 - Viktor Zaverkin
, Johannes Kästner
:
Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design. 35009 - Amit Gupta, Sabyasachi Chakraborty, Raghunathan Ramakrishnan
:
Revving up 13C NMR shielding predictions across chemical space: benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules. 35010 - Koji Hashimoto, Hong-Ye Hu
, Yi-Zhuang You
:
Neural ordinary differential equation and holographic quantum chromodynamics. 35011 - Vitaly Vanchurin
:
Toward a theory of machine learning. 35012 - Azar Sadeghnejad-Barkousaraie
, Gyanendra Bohara, Steve B. Jiang, Dan Nguyen
:
A reinforcement learning application of a guided Monte Carlo Tree Search algorithm for beam orientation selection in radiation therapy. 35013 - Onur Danaci
, Sanjaya Lohani
, Brian T. Kirby, Ryan T. Glasser:
Machine learning pipeline for quantum state estimation with incomplete measurements. 35014 - Hao Tian
, Xi Jiang, Peng Tao
:
PASSer: prediction of allosteric sites server. 35015 - Zhiyue Ding
, Lorin S. Matthews
, Truell W. Hyde
:
A machine learning based Bayesian optimization solution to non-linear responses in dusty plasmas. 35017 - Kentaro Mogushi, Ryan Quitzow-James
, Marco Cavaglià
, Sumeet Kulkarni
, Fergus Hayes:
NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals. 35018 - Friederike Metz
, Juan Polo
, Natalya Weber
, Thomas Busch
:
Deep-learning-based quantum vortex detection in atomic Bose-Einstein condensates. 35019 - Shangjie Guo, Amilson R. Fritsch
, Craig Greenberg, Ian B. Spielman
, Justyna P. Zwolak
:
Machine-learning enhanced dark soliton detection in Bose-Einstein condensates. 35020 - Annika Stuke
, Patrick Rinke
, Milica Todorovic
:
Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization. 35022 - Matthew Praeger
, Yunhui Xie
, James A. Grant-Jacob
, Robert W. Eason
, Ben Mills
:
Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environments. 35024 - Vishrut Jetly
, Bhaskar Chaudhury
:
Extracting electron scattering cross sections from swarm data using deep neural networks. 35025 - Martin P. Bircher
, Andreas Singraber
, Christoph Dellago
:
Improved description of atomic environments using low-cost polynomial functions with compact support. 35026 - Carlos Bravo-Prieto
:
Quantum autoencoders with enhanced data encoding. 35028 - Lingxiao Wang
, Tian Xu, Till Hannes Stoecker, Horst Stöcker, Yin Jiang
, Kai Zhou
:
Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. 35031 - Tommy Liu
, Amanda S. Barnard
:
Fast derivation of Shapley based feature importances through feature extraction methods for nanoinformatics. 35034 - Prakriti Kayastha
, Raghunathan Ramakrishnan
:
Machine learning modeling of materials with a group-subgroup structure. 35035 - Justin A. Reyes
, E. Miles Stoudenmire:
Multi-scale tensor network architecture for machine learning. 35036 - Martín Leandro Paleico
, Jörg Behler
:
A bin and hash method for analyzing reference data and descriptors in machine learning potentials. 37001 - Nicolae C. Iovanac, Brett M. Savoie
:
Erratum: Improving the generative performance of chemical autoencoders through transfer learning (2020 Mach. Learn.: Sci. Technol. 1 045010). 39601 - Stephen R. Green
, Jonathan Gair
:
Complete parameter inference for GW150914 using deep learning. 3 - April M. Miksch
, Tobias Morawietz, Johannes Kästner
, Alexander Urban, Nongnuch Artrith:
Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. 31001 - Merjem Hoxha, Hiqmet Kamberaj
:
Automation of some macromolecular properties using a machine learning approach. 35016 - Florian Häse
, Matteo Aldeghi
, Riley J. Hickman
, Loïc M. Roch, Melodie Christensen, Elena Liles, Jason E. Hein
, Alán Aspuru-Guzik
:
Olympus: a benchmarking framework for noisy optimization and experiment planning. 35021 - Eurika Kaiser
, J. Nathan Kutz, Steven L. Brunton:
Data-driven discovery of Koopman eigenfunctions for control. 35023 - Vinicius Mikuni
, Florencia Canelli:
Point cloud transformers applied to collider physics. 35027 - Francesca Mignacco, Pierfrancesco Urbani, Lenka Zdeborová:
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem. 35029 - Lara Hoffmann
, Ines Fortmeier, Clemens Elster:
Uncertainty quantification by ensemble learning for computational optical form measurements. 35030 - Raffaele Marino
:
Learning from survey propagation: a neural network for MAX-E-3-SAT. 35032 - Viktor Ahlberg Gagner, Maja Jensen, Gergely Katona
:
Estimating the probability of coincidental similarity between atomic displacement parameters with machine learning. 35033 - Niklas Käming
, Anna Dawid
, Korbinian Kottmann
, Maciej Lewenstein
, Klaus Sengstock, Alexandre Dauphin
, Christof Weitenberg:
Unsupervised machine learning of topological phase transitions from experimental data. 35037 - Rose K. Cersonsky, Benjamin A. Helfrecht
, Edgar A. Engel
, Sergei Kliavinek
, Michele Ceriotti
:
Improving sample and feature selection with principal covariates regression. 35038