


default search action
RecSys 2020: Virtual Event, Brazil
- Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, Edleno Silva de Moura:

RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020. ACM 2020, ISBN 978-1-4503-7583-2
Invited Keynotes
- Filippo Menczer:

4 Reasons Why Social Media Make Us Vulnerable to Manipulation. 1 - Ricardo Baeza-Yates:

Bias in Search and Recommender Systems. 2 - Michelle X. Zhou:

"You Really Get Me": Conversational AI Agents That Can Truly Understand and Help Users. 3
Long Papers
- Yoshifumi Seki, Takanori Maehara:

A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets. 4-12 - Hanze Li, Scott Sanner, Kai Luo, Ga Wu:

A Ranking Optimization Approach to Latent Linear Critiquing for Conversational Recommender Systems. 13-22 - Zhu Sun

, Di Yu
, Hui Fang, Jie Yang
, Xinghua Qu, Jie Zhang, Cong Geng:
Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. 23-32 - Chang Li, Haoyun Feng, Maarten de Rijke

:
Cascading Hybrid Bandits: Online Learning to Rank for Relevance and Diversity. 33-42 - Yin Zhang, Ziwei Zhu

, Yun He, James Caverlee:
Content-Collaborative Disentanglement Representation Learning for Enhanced Recommendation. 43-52 - Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, Mounia Lalmas:

Contextual and Sequential User Embeddings for Large-Scale Music Recommendation. 53-62 - Xu He

, Bo An, Yanghua Li, Haikai Chen, Qingyu Guo, Xin Li, Zhirong Wang:
Contextual User Browsing Bandits for Large-Scale Online Mobile Recommendation. 63-72 - Tobias Schnabel, Paul N. Bennett:

Debiasing Item-to-Item Recommendations With Small Annotated Datasets. 73-81 - Guy Aridor

, Duarte Gonçalves, Shan Sikdar:
Deconstructing the Filter Bubble: User Decision-Making and Recommender Systems. 82-91 - Yuta Saito:

Doubly Robust Estimator for Ranking Metrics with Post-Click Conversions. 92-100 - Mesut Kaya

, Derek G. Bridge, Nava Tintarev:
Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance. 101-110 - Gustavo Penha, Rodrygo L. T. Santos

:
Exploiting Performance Estimates for Augmenting Recommendation Ensembles. 111-119 - Liu Yang, Bo Liu, Leyu Lin, Feng Xia, Kai Chen, Qiang Yang:

Exploring Clustering of Bandits for Online Recommendation System. 120-129 - Jing Lin, Weike Pan, Zhong Ming:

FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation. 130-139 - Pigi Kouki, Ilias Fountalis, Nikolaos Vasiloglou, Xiquan Cui, Edo Liberty, Khalifeh Al Jadda:

From the lab to production: A case study of session-based recommendations in the home-improvement domain. 140-149 - Huazheng Wang, Qian Zhao, Qingyun Wu, Shubham Chopra, Abhinav Khaitan, Hongning Wang

:
Global and Local Differential Privacy for Collaborative Bandits. 150-159 - Samarth Aggarwal, Rohin Garg, Abhilasha Sancheti, Bhanu Prakash Reddy Guda, Iftikhar Ahamath Burhanuddin:

Goal-driven Command Recommendations for Analysts. 160-169 - James Neve, Ryan McConville

:
ImRec: Learning Reciprocal Preferences Using Images. 170-179 - Jesús Omar Álvarez Márquez, Jürgen Ziegler:

In-Store Augmented Reality-Enabled Product Comparison and Recommendation. 180-189 - Jin Huang, Harrie Oosterhuis, Maarten de Rijke

, Herke van Hoof:
Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Reinforcement Learning based Recommender Systems. 190-199 - Danyang Liu, Jianxun Lian, Shiyin Wang, Ying Qiao, Jiun-Hung Chen, Guangzhong Sun, Xing Xie

:
KRED: Knowledge-Aware Document Representation for News Recommendations. 200-209 - Xu He

, Bo An, Yanghua Li, Haikai Chen, Rundong Wang, Xinrun Wang, Runsheng Yu, Xin Li, Zhirong Wang:
Learning to Collaborate in Multi-Module Recommendation via Multi-Agent Reinforcement Learning without Communication. 210-219 - Darius Afchar

, Romain Hennequin:
Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction. 220-229 - Ahmed Rashed, Shayan Jawed, Lars Schmidt-Thieme

, Andre Hintsches:
MultiRec: A Multi-Relational Approach for Unique Item Recommendation in Auction Systems. 230-239 - Steffen Rendle, Walid Krichene, Li Zhang, John R. Anderson:

Neural Collaborative Filtering vs. Matrix Factorization Revisited. 240-248 - Mawulolo K. Ameko, Miranda L. Beltzer, Lihua Cai, Mehdi Boukhechba, Bethany A. Teachman, Laura E. Barnes:

Offline Contextual Multi-armed Bandits for Mobile Health Interventions: A Case Study on Emotion Regulation. 249-258 - Rocío Cañamares, Pablo Castells

:
On Target Item Sampling in Offline Recommender System Evaluation. 259-268 - Hongyan Tang, Junning Liu, Ming Zhao, Xudong Gong:

Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations. 269-278 - Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, Alexander Tuzhilin

:
PURS: Personalized Unexpected Recommender System for Improving User Satisfaction. 279-288 - Marialena Kyriakidi, Georgia Koutrika, Yannis E. Ioannidis

:
Recommendations as Graph Explorations. 289-298 - Panagiotis Symeonidis, Andrea Janes, Dmitry Chaltsev

, Philip Giuliani, Daniel Morandini, Andreas Unterhuber, Ludovik Coba, Markus Zanker:
Recommending the Video to Watch Next: An Offline and Online Evaluation at YOUTV.de. 299-308 - Théo Moins, Daniel Aloise

, Simon J. Blanchard:
RecSeats: A Hybrid Convolutional Neural Network Choice Model for Seat Recommendations at Reserved Seating Venues. 309-317 - Jiaxi Tang, Hongyi Wen, Ke Wang:

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. 318-327 - Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack:

SSE-PT: Sequential Recommendation Via Personalized Transformer. 328-337 - Jin Peng Zhou, Zhaoyue Cheng, Felipe Pérez, Maksims Volkovs:

TAFA: Two-headed Attention Fused Autoencoder for Context-Aware Recommendations. 338-347 - Sami Khenissi, Mariem Boujelbene, Olfa Nasraoui

:
Theoretical Modeling of the Iterative Properties of User Discovery in a Collaborative Filtering Recommender System. 348-357 - Gourab K. Patro, Abhijnan Chakraborty, Ashmi Banerjee, Niloy Ganguly

:
Towards Safety and Sustainability: Designing Local Recommendations for Post-pandemic World. 358-367 - Bo-Wen Yuan, Yaxu Liu

, Jui-Yang Hsia, Zhenhua Dong, Chih-Jen Lin:
Unbiased Ad Click Prediction for Position-aware Advertising Systems. 368-377 - Masahiro Sato

, Sho Takemori, Janmajay Singh
, Tomoko Ohkuma:
Unbiased Learning for the Causal Effect of Recommendation. 378-387 - Gustavo Penha, Claudia Hauff:

What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation. 388-397 - Tobias Schnabel, Gonzalo A. Ramos, Saleema Amershi:

"Who doesn't like dinosaurs?" Finding and Eliciting Richer Preferences for Recommendation. 398-407
Short Papers
- Fei Mi, Xiaoyu Lin

, Boi Faltings:
ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation. 408-413 - Yagmur Gizem Cinar, Jean-Michel Renders:

Adaptive Pointwise-Pairwise Learning-to-Rank for Content-based Personalized Recommendation. 414-419 - Walid Bendada, Guillaume Salha

, Théo Bontempelli:
Carousel Personalization in Music Streaming Apps with Contextual Bandits. 420-425 - Yixin Wang

, Dawen Liang, Laurent Charlin, David M. Blei:
Causal Inference for Recommender Systems. 426-431 - Denis Kotkov, Qian Zhao, Kati Launis, Mats Neovius:

ClusterExplorer: Enable User Control over Related Recommendations via Collaborative Filtering and Clustering. 432-437 - Francisco J. Peña, Diarmuid O'Reilly-Morgan, Elias Z. Tragos, Neil Hurley, Erika Duriakova, Barry Smyth, Aonghus Lawlor

:
Combining Rating and Review Data by Initializing Latent Factor Models with Topic Models for Top-N Recommendation. 438-443 - Marlesson R. O. Santana, Luckeciano C. Melo, Fernando H. F. Camargo

, Bruno Brandão, Anderson Soares, Renan M. Oliveira, Sandor Caetano:
Contextual Meta-Bandit for Recommender Systems Selection. 444-449 - Konstantina Christakopoulou, Madeleine Traverse, Trevor Potter, Emma Marriott, Daniel Li, Chris Haulk, Ed H. Chi, Minmin Chen:

Deconfounding User Satisfaction Estimation from Response Rate Bias. 450-455 - Dalin Guo, Sofia Ira Ktena, Pranay Kumar Myana, Ferenc Huszar, Wenzhe Shi, Alykhan Tejani, Michael Kneier, Sourav Das:

Deep Bayesian Bandits: Exploring in Online Personalized Recommendations. 456-461 - Kosetsu Tsukuda, Masataka Goto

:
Explainable Recommendation for Repeat Consumption. 462-467 - Oren Barkan, Yonatan Fuchs, Avi Caciularu, Noam Koenigstein

:
Explainable Recommendations via Attentive Multi-Persona Collaborative Filtering. 468-473 - Andres Ferraro

, Dietmar Jannach, Xavier Serra
:
Exploring Longitudinal Effects of Session-based Recommendations. 474-479 - Jakim Berndsen, Barry Smyth, Aonghus Lawlor

:
Fit to Run: Personalised Recommendations for Marathon Training. 480-485 - Dmitri Goldenberg, Javier Albert, Lucas Bernardi, Pablo Estevez:

Free Lunch! Retrospective Uplift Modeling for Dynamic Promotions Recommendation within ROI Constraints. 486-491 - Baptiste Barreau, Laurent Carlier:

History-Augmented Collaborative Filtering for Financial Recommendations. 492-497 - Chu-Jen Shao, Hao-Ming Fu, Pu-Jen Cheng:

Improving One-class Recommendation with Multi-tasking on Various Preference Intensities. 498-502 - Andrés Villa, Vladimir Araujo

, Francisca Cattan, Denis Parra
:
Interpretable Contextual Team-aware Item Recommendation: Application in Multiplayer Online Battle Arena Games. 503-508 - Siyi Liu, Yujia Zheng:

Long-tail Session-based Recommendation. 509-514 - Sung Min Cho, Eunhyeok Park, Sungjoo Yoo:

MEANTIME: Mixture of Attention Mechanisms with Multi-temporal Embeddings for Sequential Recommendation. 515-520 - Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara, Prasang Upadhyaya, Ferenc Huszar, Wenzhe Shi:

Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems. 521-526 - Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan V. Oseledets, Alexander Tuzhilin

:
Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. 527-532 - Alessandro B. Melchiorre

, Eva Zangerle, Markus Schedl:
Personality Bias of Music Recommendation Algorithms. 533-538 - Ciara Feely, Brian Caulfield, Aonghus Lawlor

, Barry Smyth:
Providing Explainable Race-Time Predictions and Training Plan Recommendations to Marathon Runners. 539-544 - Janhavi Dahihande, Akshay Jaiswal, Akshay Anil Pagar, Ajinkya Thakare, Magdalini Eirinaki

, Iraklis Varlamis:
Reducing energy waste in households through real-time recommendations. 545-550 - Ziwei Zhu

, Yun He, Yin Zhang, James Caverlee:
Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning. 551-556 - Tushar Shandhilya, Nisheeth Srivastava:

Using conceptual incongruity as a basis for making recommendations. 557-561
Industry Papers
- Zachary A. Schendel, Faraz Farzin, Siddhi Sundar:

A Human Perspective on Algorithmic Similarity. 562 - Balázs Tóth, Sandhya Sachidanandan, Emil S. Jørgensen:

Balancing Relevance and Discovery to Inspire Customers in the IKEA App. 563 - Lakshmi Ramachandran:

Behavior-based Popularity Ranking on Amazon Video. 564-565 - R. Ramanathan, Nicolas K. Shinada, Sucheendra K. Palaniappan

:
Building a reciprocal recommendation system at scale from scratch: Learnings from one of Japan's prominent dating applications. 566-567 - Zhenhua Dong, Hong Zhu, Pengxiang Cheng, Xinhua Feng, Guohao Cai, Xiuqiang He, Jun Xu, Jirong Wen:

Counterfactual learning for recommender system. 568-569 - Sanghamitra Deb:

Developing Recommendation System to provide a Personalized Learning experience at Chegg. 570 - Felipe Ferreira, Daniele R. Souza, Igor Moura, Matheus Barbieri, Hélio Côrtes Vieira Lopes:

Investigating Multimodal Features for Video Recommendations at Globoplay. 571-572 - Markus Reiter-Haas, David Wittenbrink, Emanuel Lacic:

On the Heterogeneous Information Needs in the Job Domain: A Unified Platform for Student Career. 573-574 - Moumita Bhattacharya, Amey Barapatre:

Query as Context for Item-to-Item Recommendation. 575-576 - Jacopo Tagliabue, Bingqing Yu, Federico Bianchi:

The Embeddings That Came in From the Cold: Improving Vectors for New and Rare Products with Content-Based Inference. 577-578
Demonstrations
- Ben Tan, Bo Liu, Vincent W. Zheng, Qiang Yang:

A Federated Recommender System for Online Services. 579-581 - Ting-Hsiang Wang, Xia Hu, Haifeng Jin, Qingquan Song, Xiaotian Han, Zirui Liu:

AutoRec: An Automated Recommender System. 582-584 - Rohan Anand, Joeran Beel:

Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimization. 585-587 - Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis, Siwei Liu

, Yaxiong Wu, Xi Wang
, Shangsong Liang, Yucheng Liang, Guangtao Zeng, Junhua Liang, Qiang Zhang:
BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems. 588-590 - Martin Mladenov, Chih-Wei Hsu, Vihan Jain, Eugene Ie, Christopher Colby, Nicolas Mayoraz, Hubert Pham, Dustin Tran, Ivan Vendrov, Craig Boutilier:

Demonstrating Principled Uncertainty Modeling for Recommender Ecosystems with RecSim NG. 591-593 - Nasim Sonboli, Robin Burke, Zijun Liu

, Masoud Mansoury:
Fairness-aware Recommendation with librec-auto. 594-596 - Mete Sertkan, Julia Neidhardt, Hannes Werthner:

PicTouRe - A Picture-Based Tourism Recommender. 597-599 - Joeran Beel:

Recommender-Systems.com: A Central Platform for the Recommender-System Community. 600-603 - Aaron Rodden, Tarun Salh, Eriq Augustine, Lise Getoor:

VMI-PSL: Visual Model Inspector for Probabilistic Soft Logic. 604-606
Workshops & Challenge
- Michael D. Ekstrand, Pierre-Nicolas Schwab, Jean Garcia-Gathright

, Toshihiro Kamishima, Nasim Sonboli:
3rd FAccTRec Workshop: Responsible Recommendation. 607-608 - Toine Bogers, Marijn Koolen

, Casper Petersen, Bamshad Mobasher
, Alexander Tuzhilin
:
ComplexRec 2020: Workshop on Recommendation in Complex Environments. 609-610 - Alan Said, Hanna Schäfer

, Helma Torkamaan, Christoph Trattner:
Fifth International Workshop on Health Recommender Systems (HealthRecSys 2020). 611-612 - Peter Brusilovsky, Marco de Gemmis, Alexander Felfernig, Pasquale Lops, John O'Donovan, Giovanni Semeraro, Martijn C. Willemsen

:
Interfaces and Human Decision Making for Recommender Systems. 613-618 - João Vinagre

, Alípio Mário Jorge
, Marie Al-Ghossein, Albert Bifet
:
ORSUM - Workshop on Online Recommender Systems and User Modeling. 619-620 - Ching-Wei Chen, Longqi Yang, Hongyi Wen, Rosie Jones, Vladan Radosavljevic, Hugues Bouchard:

PodRecs: Workshop on Podcast Recommendations. 621-622 - Vito Walter Anelli, Amra Delic

, Gabriele Sottocornola, Jessie Smith, Nazareno Andrade, Luca Belli, Michael M. Bronstein, Akshay Gupta, Sofia Ira Ktena, Alexandre Lung-Yut-Fong, Frank Portman, Alykhan Tejani, Yuanpu Xie, Xiao Zhu, Wenzhe Shi:
RecSys 2020 Challenge Workshop: Engagement Prediction on Twitter's Home Timeline. 623-627 - Thorsten Joachims, Yves Raimond, Olivier Koch, Maria Dimakopoulou, Flavian Vasile, Adith Swaminathan:

REVEAL 2020: Bandit and Reinforcement Learning from User Interactions. 628-629 - Oren Sar Shalom, Dietmar Jannach, Joseph A. Konstan

:
Second Workshop on the Impact of Recommender Systems at ACM RecSys '20. 630-631 - Shatha Jaradat, Nima Dokoohaki

, Humberto Jesús Corona Pampín, Reza Shirvany:
Second Workshop on Recommender Systems in Fashion - fashionXrecsys2020. 632-634 - Gediminas Adomavicius, Konstantin Bauman

, Bamshad Mobasher
, Francesco Ricci, Alexander Tuzhilin
, Moshe Unger:
Workshop on Context-Aware Recommender Systems. 635-637 - Antonela Tommasel, Daniela Godoy, Arkaitz Zubiaga:

Workshop on Online Misinformation- and Harm-Aware Recommender Systems. 638-639
Late-Breaking Results
- Samuel Alexander Stein, Gary M. Weiss, Yiwen Chen, Daniel D. Leeds:

A College Major Recommendation System. 640-644 - Yu Liu, Xiaoxiao Xu

, Jincheng Wang, Yong Li, Changping Peng, Yongjun Bao, Weipeng P. Yan:
A Joint Dynamic Ranking System with DNN and Vector-based Clustering Bandit. 645-650 - Olivier Jeunen, Jan Van Balen, Bart Goethals

:
Closed-Form Models for Collaborative Filtering with Side-Information. 651-656 - Heng-Shiou Sheu, Sheng Li:

Context-aware Graph Embedding for Session-based News Recommendation. 657-662 - Hyun Jeong Kim, So Yeon Park

, Minju Park
, Kyogu Lee:
Do Channels Matter? Illuminating Interpersonal Influence on Music Recommendations. 663-668 - Ashlee Milton, Levesson Batista, Garrett Allen

, Siqi Gao
, Yiu-Kai Ng, Maria Soledad Pera
:
"Don't Judge a Book by its Cover": Exploring Book Traits Children Favor. 669-674 - Fábio Colaço, Márcia Barros

, Francisco M. Couto
:
DRecPy: A Python Framework for Developing Deep Learning-Based Recommenders. 675-680 - Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis:

Exploring Data Splitting Strategies for the Evaluation of Recommendation Models. 681-686 - Rishabh Mehrotra, Prasanta Bhattacharya, Mounia Lalmas:

Inferring the Causal Impact of New Track Releases on Music Recommendation Platforms through Counterfactual Predictions. 687-691 - Rishabh Mehrotra, Chirag Shah

, Benjamin A. Carterette:
Investigating Listeners' Responses to Divergent Recommendations. 692-696 - Aaron Ng, Rishabh Mehrotra:

Investigating the Impact of Audio States & Transitions for Track Sequencing in Music Streaming Sessions. 697-702 - Ehtsham Elahi, Ashok Chandrashekar:

Learning Representations of Hierarchical Slates in Collaborative Filtering. 703-707 - Niall Twomey, Mikhail Fain, Andrey Ponikar, Nadine Sarraf:

Towards Multi-Language Recipe Personalisation and Recommendation. 708-713 - Shruti Kunde, Mayank Mishra, Amey Pandit, Rekha Singhal, Manoj Karunakaran Nambiar, Gautam Shroff, Shashank Gupta

:
Recommending in changing times. 714-719 - Yong Li, Zihao Zhao, Zhiwei Fang, Kui Ma, Yafei Yao, Changping Peng, Yongjun Bao, Weipeng Yan:

Smart Targeting: A Relevance-driven and Configurable Targeting Framework for Advertising System. 720-725 - Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher

:
The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation. 726-731 - Benjamin Paul Chamberlain, Emanuele Rossi, Dan Shiebler, Suvash Sedhain, Michael M. Bronstein:

Tuning Word2vec for Large Scale Recommendation Systems. 732-737
Tutorials
- Vito Walter Anelli, Yashar Deldjoo

, Tommaso Di Noia, Felice Antonio Merra
:
Adversarial Learning for Recommendation: Applications for Security and Generative Tasks - Concept to Code. 738-741 - David Rohde, Flavian Vasile, Sergey Ivanov, Otmane Sakhi:

Bayesian Value Based Recommendation: A modelling based alternative to proxy and counterfactual policy based recommendation. 742-744 - Ruoyuan Gao

, Chirag Shah
:
Counteracting Bias and Increasing Fairness in Search and Recommender Systems. 745-747 - Andrea Barraza-Urbina, Dorota Glowacka:

Introduction to Bandits in Recommender Systems. 748-750 - Zuohui Fu, Yikun Xian, Yongfeng Zhang, Yi Zhang

:
Tutorial on Conversational Recommendation Systems. 751-753 - Benedikt Schifferer, Chris Deotte, Even Oldridge:

Tutorial: Feature Engineering for Recommender Systems. 754-755
Doctoral Symposium
- Elizabeth Gómez

:
Characterizing and Mitigating the Impact of Data Imbalance for Stakeholders in Recommender Systems. 756-757 - Andrea Iovine:

Conversational Agents for Recommender Systems. 758-763 - Jacob Munson

:
Developing Work in Confidence, Similarity Structure, and Modeling User Event Time. 764-769 - Iulia Paun:

Efficiency-Effectiveness Trade-offs in Recommendation Systems. 770-775 - Bartolomé Ortiz Viso

:
Evolutionary Approach in Recommendation Systems for Complex Structured Objects. 776-781 - Joey De Pauw

:
Exploratory Methods for Evaluating Recommender Systems. 782-786 - Luchiana Cezara Brodeala:

Online Recommender system for Accessible Tourism Destinations. 787-791 - Pablo Pérez-Núñez

:
Taking advantage of images and texts in recommender systems: semantics and explainability. 792-796

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














