


default search action
RecSys 2024: Bari, Italy - Challenge
- Proceedings of the Recommender Systems Challenge 2024, RecSysChallenge 2024, Bari, Italy, October 14-18, 2024. ACM 2024, ISBN 979-8-4007-1127-5

- Johannes Kruse

, Kasper Lindskow
, Saikishore Kalloori
, Marco Polignano
, Claudio Pomo
, Abhishek Srivastava
, Anshuk Uppal
, Michael Riis Andersen
, Jes Frellsen
:
EB-NeRD a large-scale dataset for news recommendation. 1-11 - Antonio Ferrara

, Marco Valentini
, Paolo Masciullo
, Antonio De Candia
, Davide Abbattista
, Riccardo Fusco
, Claudio Pomo
, Vito Walter Anelli
, Giovanni Maria Biancofiore
, Ludovico Boratto
, Fedelucio Narducci
:
DIVAN: Deep-Interest Virality-Aware Network to Exploit Temporal Dynamics in News Recommendation. 12-16 - Andrea Alari

, Lorenzo Campana
, Federico Giuseppe Ciliberto
, Saverio Maggese
, Carlo Sgaravatti
, Francesco Zanella
, Andrea Pisani
, Maurizio Ferrari Dacrema
:
Exploiting Contextual Normalizations and Article Endorsement for News Recommendation. 17-21 - Lucien Heitz

, Sanne Vrijenhoek
, Oana Inel
:
Recommendations for the Recommenders: Reflections on Prioritizing Diversity in the RecSys Challenge. 22-26 - Tetsuro Sugiura

, Yosuke Yamagishi
, Yodai Kishimoto
:
Leveraging LightGBM Ranker for Efficient Large-Scale News Recommendation Systems. 27-31 - Qi Zhang

, Jieming Zhu
, Jiansheng Sun
, Guohao Cai
, Ruining Yu
, Bangzheng He
, Liangbi Li
:
Enhancing News Recommendation with Real-Time Feedback and Generative Sequence Modeling. 32-36 - Tomomu Iwai

, Akihiro Tomita
, Tomoyuki Arai
, Hiroki Ogawa
, Takuma Saito
:
Harnessing Temporal Dynamics and Content: An Ensemble of Gradient Boosting Machines for News Recommendation. 37-41 - Kazuki Fujikawa

, Naoki Murakami
, Yuki Sugawara
:
Enhancing News Recommendation with Transformers and Ensemble Learning. 42-47 - Juan Manuel Rodriguez

, Antonela Tommasel
:
Leveraging User History with Transformers for News Clicking: The DArgk Approach. 48-52 - Taofeng Xue

, Zhimin Lin
, Zijian Zhang
, Linsen Guo
, Haoru Chen
, Mengjiao Bao
, Peng Yan
:
Large Scale Hierarchical User Interest Modeling for Click-through Rate Prediction. 53-57

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














