


default search action
NIPS 1992: Denver, CO, USA
- Stephen Jose Hanson, Jack D. Cowan, C. Lee Giles:

Advances in Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992]. Morgan Kaufmann 1993, ISBN 1-55860-274-7
Part 1: Learning and Generalization
- Nathan Intrator:

On the Use of Projection Pursuit Constraints for Training Neural Networks. 3-10 - Andreas Stolcke, Stephen M. Omohundro:

Hidden Markov Model} Induction by Bayesian Model Merging. 11-18 - Kai-Yeung Siu, Vwani P. Roychowdhury, Thomas Kailath:

Computing with Almost Optimal Size Neural Networks. 19-26 - Janet Wiles, Mark Ollila:

Intersecting Regions: The Key to Combinatorial Structure in Hidden Unit Space. 27-33 - Tony Plate:

Holographic Recurrent Networks. 34-41 - Harris Drucker, Robert E. Schapire, Patrice Y. Simard:

Improving Performance in Neural Networks Using a Boosting Algorithm. 42-49 - Patrice Y. Simard, Yann LeCun, John S. Denker:

Efficient Pattern Recognition Using a New Transformation Distance. 50-58 - Kai-Yeung Siu, Vwani P. Roychowdhury:

Optimal Depth Neural Networks for Multiplication and Related Problems. 59-64 - Sreerupa Das, C. Lee Giles

, Guo-Zheng Sun:
Using Prior Knowledge in a {NNPDA} to Learn Context-Free Languages. 65-72 - Yaser S. Abu-Mostafa:

A Method for Learning From Hints. 73-80 - Charles W. Anderson:

Q-Learning with Hidden-Unit Restarting. 81-88 - J. Stephen Judd, Paul W. Munro:

Nets with Unreliable Hidden Nodes Learn Error-Correcting Codes. 89-96
Part 2: Architectures and Algorithms
- Richard K. Belew:

Interposing an Ontogenetic Model Between Genetic Algorithms and Neural Networks. 99-106 - J. Jeffrey Mahoney, Raymond J. Mooney:

Combining Neural and Symbolic Learning to Revise Probabilistic Rule Bases. 107-114 - Mark B. Ring:

Learning Sequential Tasks by Incrementally Adding Higher Orders. 115-122 - Bernd Fritzke:

Kohonen Feature Maps and Growing Cell Structures - a Performance Comparison. 123-130 - Brian V. Bonnlander, Michael Mozer:

Metamorphosis Networks: An Alternative to Constructive Models. 131-138 - Eric I. Chang, Richard Lippmann:

A Boundary Hunting Radial Basis Function Classifier which Allocates Centers Constructively. 139-146 - Isabelle Guyon, Bernhard E. Boser, Vladimir Vapnik:

Automatic Capacity Tuning of Very Large VC-Dimension Classifiers. 147-155 - Yann LeCun, Patrice Y. Simard, Barak A. Pearlmutter:

Automatic Learning Rate Maximization in Large Adaptive Machines. 156-163 - Babak Hassibi, David G. Stork:

Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. 164-171 - Richard S. Zemel, Christopher K. I. Williams, Michael Mozer:

Directional-Unit Boltzmann Machines. 172-179 - Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee:

Time Warping Invariant Neural Networks. 180-187 - Enno Littmann, Helge J. Ritter:

Generalization Abilities of Cascade Network Architecture. 188-195 - Gerhard Paass:

Assessing and Improving Neural Network Predictions by the Bootstrap Algorithm. 196-203 - Lorien Y. Pratt:

Discriminability-Based Transfer between Neural Networks. 204-211 - Barry Flower, Marwan A. Jabri:

Summed Weight Neuron Perturbation: An O(N) Improvement Over Weight Perturbation. 212-219 - Virginia R. de Sa, Dana H. Ballard:

A Note on Learning Vector Quantization. 220-227 - William Finnoff, Ferdinand Hergert, Hans-Georg Zimmermann:

Extended Regularization Methods for Nonconvergent Model Selection. 228-235 - Bill Baird, Todd Troyer, Frank H. Eeckman:

Synchronization and Grammatical Inference in an Oscillating Elman Net. 236-243 - Gert Cauwenberghs:

A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization. 244-251
Part 3: Control, Navigation, and Planning
- David DeMers, Kenneth Kreutz-Delgado:

Global Regularization of Inverse Kinematics for Redundant Manipulators. 255-262 - Andrew W. Moore, Christopher G. Atkeson:

Memory-Based Reinforcement Learning: Efficient Computation with Prioritized Sweeping. 263-270 - Peter Dayan, Geoffrey E. Hinton:

Feudal Reinforcement Learning. 271-278 - Dean Pomerleau:

Input Reconstruction Reliability Estimation. 279-286 - Tom M. Mitchell, Sebastian Thrun:

Explanation-Based Neural Network Learning for Robot Control. 287-294 - Steven J. Bradtke:

Reinforcement Learning Applied to Linear Quadratic Regulation. 295-302 - Christopher Bowman:

Neural Network On-Line Learning Control of Spacecraft Smart Structures. 303-310 - Yoji Uno, Naohiro Fukumura, Ryoji Suzuki, Mitsuo Kawato:

Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements. 311-318 - James K. Peterson:

On Line Estimation of Optimal Control Sequences: HJB Estimators. 319-326 - Vijaykumar Gullapalli:

Learning Control Under Extreme Uncertainty. 327-334 - Terence D. Sanger:

A Practice Strategy for Robot Learning Control. 335-341 - Gerald Fahner, Rolf Eckmiller:

Learning Spatio-Temporal Planning from a Dynamic Programming Teacher: Feed-Forward Neurocontrol for Moving Obstacle Avoidance. 342-349 - Charles M. Higgins, Rodney M. Goodman:

Learning Fuzzy Rule-Based Neural Networks for Control. 350-357
Part 4: Visual Processing
- Suzanna Becker:

Learning to Categorize Objects Using Temporal Coherence. 361-368 - Steven J. Nowlan, Terrence J. Sejnowski:

Filter Selection Model for Generating Visual Motion Signals. 369-376 - Edward Stern, Ad Aertsen, Eilon Vaadia, Shaul Hochstein:

Stimulus Encoding by Multidimensional Receptive Fields in Single Cells and Cell Populations in V1 of Awake Monkey. 377-384 - Suthep Madarasmi, Daniel J. Kersten, Ting-Chuen Pong:

The Computation of Stereo Disparity for Transparent and for Opaque Surfaces. 385-392 - Subutai Ahmad, Volker Tresp:

Some Solutions to the Missing Feature Problem in Vision. 393-400 - Joachim Utans, Gene Gindi:

Improving Convergence in Hierarchical Matching Networks for Object Recognition. 401-408 - Carlos D. Brody:

A Model of Feedback to the Lateral Geniculate Nucleus. 409-416 - Kevin E. Martin, Jonathan A. Marshall:

Unsmearing Visual Motion: Development of Long-Range Horizontal Intrinsic Connections. 417-424 - Hayit Greenspan, Rodney M. Goodman:

Remote Sensing Image Analysis via a Texture Classification Neural Network. 425-432 - Markus Lappe, Josef P. Rauschecker:

Computation of Heading Direction from Optic Flow in Visual Cortex. 433-440 - Gale Martin, Mosfeq Rashid, David Chapman, James A. Pittman:

Learning to See Where and What: Training a Net to Make Saccades and Recognize Handwritten Characters. 441-447
Part 5: Stochastic Learning and Analysis
- Todd K. Leen, John E. Moody:

Weight Space Probability Densities in Stochastic Learning: I. Dynamics and Equilibria. 451-458 - William Finnoff:

Diffusion Approximations for the Constant Step Size Backpropagation Algorithm and Resistance to Local Minima. 459-466 - Lei Xu, Alan L. Yuille:

Self-Organizing Rules for Robust Principal Component Analysis. 467-474 - Radford M. Neal:

Bayesian Learning via Stochastic Dynamics. 475-482 - Yoav Freund, H. Sebastian Seung, Eli Shamir, Naftali Tishby:

Information, Prediction, and Query by Committee. 483-490 - Alan F. Murray, Peter J. Edwards:

Synaptic Weight Noise During MLP Learning Enhances Fault-Tolerance, Generalization and Learning Trajectory. 491-498 - Nicol N. Schraudolph, Terrence J. Sejnowski:

Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain. 499-506 - Genevieve B. Orr, Todd K. Leen:

Weight Space Probability Densities in Stochastic Learning: II. Transients and Basin Hopping Times. 507-514 - Satoru Shiono, Satoshi Yamada, Michio Nakashima, Kenji Matsumoto:

Information Theoretic Analysis of Connection Structure from Spike Trains. 515-522 - Holm Schwarze, John A. Hertz:

Statistical Mechanics of Learning in a Large Committee Machine. 523-530 - John W. Miller, Rodney M. Goodman:

Probability Estimator from a Database Using a Gibbs Energy Model. 531-538 - David H. Wolpert:

On the Use of Evidence in Neural Networks. 539-546
Part 6: Network Dynamics and Chaos
- Bernard Doyon, Bruno Cessac, Mathias Quoy, Manuel Samuelides:

Destabilization and Route to Chaos in Neural Networks with Random Connectivity. 549-555 - Ali A. Minai, William B. Levy:

Predicting Complex Behavior in Sparse Asymmetric Networks. 556-563 - Isaac Meilijson, Eytan Ruppin, Moshe Sipper:

Single-Iteration Threshold Hamming Networks. 564-571 - Isaac Meilijson, Eytan Ruppin:

History-Dependent Attractor Neural Networks. 572-579 - David DeMers, Garrison W. Cottrell:

Non-Linear Dimensionality Reduction. 580-587
Part 7: Theory and Analysis
- Mostefa Golea, Mario Marchand, Thomas R. Hancock:

On Learning µ-Perceptron Networks with Binary Weights. 591-598 - Yong Liu:

Neural Network Model Selection Using Asymptotic Jackknife Estimator and Cross-Validation Method. 599-606 - Noboru Murata, Shuji Yoshizawa, Shun-ichi Amari:

Learning Curves, Model Selection and Complexity of Neural Networks. 607-614 - Bhaskar DasGupta, Georg Schnitger:

The Power of Approximation: A Comparison of Activation Functions. 615-622 - Uwe Helmke, Robert C. Williamson:

Rational Parametrizations of Neural Networks. 623-630 - N. H. Wulff, John A. Hertz:

Learning Cellular Automation Dynamics with Neural Networks. 631-638 - Adam Kowalczyk:

Some Estimates on the Number of Connections and Hidden Units for Feed-Forward Networks. 639-646
Part 8: Speech and Signal Processing
- Michael Cohen, Horacio Franco, Nelson Morgan, David E. Rumelhart, Victor Abrash:

Context-Dependent Multiple Distribution Phonetic Modeling with MLPs. 649-657 - Makoto Hirayama, Eric Vatikiotis-Bateson, Kiyoshi Honda, Yasuharu Koike, Mitsuo Kawato:

Physiologically Based Speech Synthesis. 658-665 - Weimin Liu, Andreas G. Andreou, Moise H. Goldstein Jr.:

Analog Cochlear Model for Multiresolution Speech Analysis. 666-673 - Wei-Tsih Lee, John C. Pearson:

A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems. 674-681 - Yochai Konig, Nelson Morgan, Chuck Wooters, Victor Abrash, Michael Cohen, Horacio Franco:

Modeling Consistency in a Speaker Independent Continuous Speech Recognition System. 682-687 - José Carlos Príncipe, Abir Zahalka:

Transient Signal Detection with Neural Networks: The Search for the Desired Signal. 688-695 - Joe Tebelskis, Alex Waibel:

Performance Through Consistency: MS-TDNN's for Large Vocabulary Continuous Speech Recognition. 696-703 - George Zavaliagkos, Ying Zhao, Richard M. Schwartz, John Makhoul:

A Hybrid Neural Net System for State-of-the-Art Continuous Speech Recognition. 704-711 - Hermann Hild, Alex Waibel:

Connected Letter Recognition with a Multi-State Time Delay Neural Network. 712-719
Part 9: Applications
- Markus Schenkel, H. Weissman, Isabelle Guyon, C. Nohl, Donnie Henderson:

Recognition-Based Segmentation of On-Line Hand-Printed Words. 723-730 - Esther Levin, Roberto Pieraccini:

Planar Hidden Markov Modeling: From Speech to Optical Character Recognition. 731-738 - Jen-Lun Yuan, Terrence Fine:

Forecasting Demand for Electric Power. 739-746 - Pierre Baldi, Yves Chauvin, Tim Hunkapiller, Marcella A. McClure:

Hidden Markov Models in Molecular Biology: New Algorithms and Applications. 747-754 - Charles R. Rosenberg, Jacob Erel, Henri Atlan:

A Neural Network that Learns to Interpret Myocardial Planar Thallium Scintigrams. 755-762
Part 10: Implementations
- Janeen Anderson, John C. Platt, David Blair Kirk:

An Analog VLSI Chip for Radial Basis Functions. 765-772 - Stephen Churcher, Donald J. Baxter, Alister Hamilton, Alan F. Murray, H. Martin Reekie:

Generic Analog Neural Computation - The Epsilon Chip. 773-780 - Rahul Sarpeshkar, Wyeth Bair, Christof Koch:

Visual Motion Computation in Analog VLSI Using Pulses. 781-788 - David B. Kirch, Douglas Kerns, Kurt W. Fleischer, Alan H. Barr:

Analog VLSI Implementation of Gradient Descent. 789-796 - Alexander Linden, Thomas Sudbrak, Christoph Tietz, F. Weber:

An Object-Oriented Framework for the Simulation of Neural Networks. 797-804 - Eros Pasero, Riccardo Zecchina:

Attractor Neural Networks with Local Inhibition: From Statistical Physics to a Digitial Programmable Integrated Circuit. 805-812 - Sylvie Renaud-Le Masson, Gwendal Le Masson, Eve Marder, L. F. Abbott:

Hybrid Circuits of Interacting Computer Model and Biological Neurons. 813-819 - John Lazzaro, John Wawrzynek, Misha Mahowald, Massimo Sivilotti, Dave Gillespie:

Silicon Auditory Processors as Computer Peripherals. 820-827 - Christof Koch, Binnal Mathur, Shih-Chii Liu, John G. Harris, Jin Luo, Massimo Sivilotti:

Object-Based Analog VLSI Vision Circuits. 828-835 - Joshua Alspector, Ronny Meir, Ben P. Yuhas, Anthony Jayakumar, D. Lippe:

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks. 836-844
Part 11: Cognitive Science
- Paul Smolensky:

Harmonic Grammars for Formal Languages. 847-854 - Dedre Gentner, Arthur B. Markman:

Analogy - Watershed or Waterloo? Structural Alignment and the Development of Connectionist Models of Cognition. 855-862 - Michael Mozer, Sreerupa Das:

A Connectionist Symbol Manipulator that Discovers the Structure of Context-Free Languages. 863-870 - Volker Tresp, Jürgen Hollatz, Subutai Ahmad:

Network Structuring and Training Using Rule-Based Knowledge. 871-878 - Daphne Bavelier, Michael I. Jordan:

A Dynamical Model of Priming and Repetition Blindness. 879-886 - Geoffrey G. Towell, Richard Lehrer:

A Knowledge-Based Model of Geometry Learning. 887-894 - Hinrich Schütze:

Word Space. 895-902 - Rainer Goebel:

Perceiving Complex Visual Scenes: An Oscillator Neural Network Model that Integrates Selective Attention, Perceptual Organization, and Invariant Recognition. 903-910
Part 12: Computational and Theoretical Neurobiology
- Kenji Doya, Mary E. T. Boyle, Allen I. Selverston:

Maaping Between Neural and Physical Activities of the Lobster Gastric Mill. 913-920 - Mark E. Nelson:

A Neural Model of Descending Gain Control in the Electrosensory System. 921-928 - Neil Burgess, John O'Keefe, Michael Recce:

Using Hippocampal 'Plane Cells' for Navigation, Exploiting Phase Coding. 929-936 - Mark A. Gluck, Catherine Myers:

Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Functions. 937-944 - Itay Gat, Naftali Tishby:

Statistical Modeling of Cell Assemblies Activities in Associative Cortex of Behaving Monkeys. 945-952 - Ralph Linsker:

Deriving Receptive Fields Using an Optimal Encoding Criterion. 953-960 - Olivier J. M. D. Coenen, Terrence J. Sejnowski, Stephen G. Lisberger:

Biologically Plausible Local Learning Rules for the Adaptation of the Vestibulo-Ocular Reflex. 961-968 - P. Read Montague, Peter Dayan, Steven J. Nowlan, Terrence J. Sejnowski:

Using Aperiodic Reinforcement for Directed Self-Organization During Development. 969-976 - Klaus Pawelzik, Hans-Ulrich Bauer, Josef Deppisch, Theo Geisel:

How Oscillatory Neuronal Responses Reflect Bistability and Switching of the Hidden Assembly Dynamics. 977-984 - Geoffrey J. Goodhill:

Topography and Ocular Dominance with Positive Correlations. 985-992 - Frank Moss, André Longtin:

Statistical and Dynamical Interpretation of ISIH Data from Periodically Stimulated Sensory Neurons. 993-1000 - John G. Milton, Po Hsiang Chu, Jack D. Cowan:

Spiral Waves in Integrate-and-Fire Neural Networks. 1001-1006 - Lance Craig Walton, David L. Bisset:

Parametrizing Feature Sensitive Cell Formation in Linsker Networks in the Auditory System. 1007-1013 - Lina Massone:

A Recurrent Neural Network for Generation of Occular Saccades. 1014-1021 - Christiane Linster, David Marsan, Claudine Masson, Michel Kerszberg, Gérard Dreyfus, Léon Personnaz:

A Formal Model of the Insect Olfactory Macroglomerulus: Simulations and Analytic Results. 1022-1029 - William E. Skaggs, Bruce L. McNaughton, Katalin M. Gothard:

An Information-Theoretic Approach to Deciphering the Hippocampal Code. 1030-1037

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














