


default search action
MLHC 2021: Virtual Event
- Ken Jung, Serena Yeung, Mark P. Sendak, Michael W. Sjoding, Rajesh Ranganath:

Proceedings of the Machine Learning for Healthcare Conference, MLHC 2021, 6-7 August 2021, Virtual Event. Proceedings of Machine Learning Research 149, PMLR 2021 - Shengpu Tang

, Jenna Wiens:
Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings. 2-35 - Junwoo Park

, Youngwoo Cho
, Haneol Lee, Jaegul Choo, Edward Choi:
Knowledge Graph-based Question Answering with Electronic Health Records. 36-53 - Zhiliang Wu, Yinchong Yang, Peter A. Fasching, Volker Tresp:

Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated Failure Time Models. 54-79 - Jason Zhao, Monica Agrawal, Pedram Razavi, David A. Sontag:

Directing Human Attention in Event Localization for Clinical Timeline Creation. 80-102 - Emma Chen, Andy Kim, Rayan Krishnan, Jin Long, Andrew Y. Ng, Pranav Rajpurkar:

CheXbreak: Misclassification Identification for Deep Learning Models Interpreting Chest X-rays. 103-125 - Sebastian Caldas, Joo Heung Yoon, Michael R. Pinsky, Gilles Clermont, Artur Dubrawski:

Understanding Clinical Collaborations Through Federated Classifier Selection. 126-145 - Daniela de Albuquerque, Jack Goffinet, Rachael Wright, John M. Pearson

:
Deep Generative Analysis for Task-Based Functional MRI Experiments. 146-175 - Brian Chen, Golara Javadi, Amoon Jamzad, Alexander Hamilton, Stephanie Sibley, Purang Abolmaesumi, David Maslove, Parvin Mousavi:

Detecting Atrial Fibrillation in ICU Telemetry data with Weak Labels. 176-195 - Byung-Hak Kim, Varun Ganapathi:

Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction from Clinical Notes by Machines. 196-208 - Jiayu Yao, Emma Brunskill, Weiwei Pan, Susan A. Murphy, Finale Doshi-Velez:

Power Constrained Bandits. 209-259 - Siddharth Biswal, Soumya Ghosh, Jon Duke, Bradley A. Malin, Walter F. Stewart, Cao Xiao, Jimeng Sun:

EVA: Generating Longitudinal Electronic Health Records Using Conditional Variational Autoencoders. 260-282 - Haiqi Wei, Frank Rudzicz, David J. Fleet, Teodor P. Grantcharov, Babak Taati:

Intraoperative Adverse Event Detection in Laparoscopic Surgery: Stabilized Multi-Stage Temporal Convolutional Network with Focal-Uncertainty Loss. 283-307 - Andrew C. Miller, Leon A. Gatys, Joseph Futoma, Emily B. Fox:

Model-based metrics: Sample-efficient estimates of predictive model subpopulation performance. 308-336 - Yeachan Kim, Bonggun Shin:

An Interpretable Framework for Drug-Target Interaction with Gated Cross Attention. 337-353 - Bharath Chintagunta, Namit Katariya, Xavier Amatriain, Anitha Kannan:

Medically Aware GPT-3 as a Data Generator for Medical Dialogue Summarization. 354-372 - Kevin Murphy, Abhishek Kumar, Stylianos Serghiou:

Risk score learning for COVID-19 contact tracing apps. 373-390 - Hiba Ahsan, Emmie Ohnuki, Avijit Mitra, Hong You:

MIMIC-SBDH: A Dataset for Social and Behavioral Determinants of Health. 391-413 - Naoki Nonaka, Jun Seita:

In-depth Benchmarking of Deep Neural Network Architectures for ECG Diagnosis. 414-439 - Mark Mirtchouk, Bharat Srikishan, Samantha Kleinberg:

Hierarchical Information Criterion for Variable Abstraction. 440-460 - Nasir Hayat, Hazem Lashen, Farah E. Shamout:

Multi-Label Generalized Zero Shot Learning for the Classiffcation of Disease in Chest Radiographs. 461-477 - Ardavan Saeedi, Payman Yadollahpour, Sumedha Singla, Brian Pollack, William M. Wells III, Frank C. Sciurba, Kayhan Batmanghelich:

Incorporating External Information in Tissue Subtyping: A Topic Modeling Approach. 478-505 - Erkin Ötles, Jeeheh Oh, Benjamin Li, Michelle Bochinski, Hyeon Joo

, Justin Ortwine, Erica Shenoy, Laraine Washer, Vincent B. Young, Krishna Rao, Jenna Wiens:
Mind the Performance Gap: Examining Dataset Shift During Prospective Validation. 506-534 - Iñigo Urteaga, Kathy Li, Amanda Shea, Virginia J. Vitzthum, Chris H. Wiggins, Noemie Elhadad:

A Generative Modeling Approach to Calibrated Predictions: A Use Case on Menstrual Cycle Length Prediction. 535-566 - Gian Marco Visani, Alexandra Hope Lee, Cuong Nguyen, David M. Kent, John B. Wong, Joshua T. Cohen, Michael C. Hughes

:
Approximate Bayesian Computation for an Explicit-Duration Hidden Markov Model of COVID-19 Hospital Trajectories. 567-613 - Zhe Huang, Gary Long, Benjamin Wessler, Michael C. Hughes:

A New Semi-supervised Learning Benchmark for Classifying View and Diagnosing Aortic Stenosis from Echocardiograms. 614-647 - Preston Putzel, Hyungrok Do, Alex Boyd, Hua Zhong, Padhraic Smyth:

Dynamic Survival Analysis for EHR Data with Personalized Parametric Distributions. 648-673 - Chirag Nagpal, Steve Yadlowsky, Negar Rostamzadeh, Katherine A. Heller:

Deep Cox Mixtures for Survival Regression. 674-708 - Jin Zhou, Nick DeCapite, Jackson McNabb, Jose R. Ruiz

, Deborah A. Fisher, Sonia Grego, Krishnendu Chakrabarty:
Stool Image Analysis for Precision Health Monitoring by Smart Toilets. 709-729 - Sarah C. Brüningk

, Felix Hensel, Louis P. Lukas, Merel Kuijs, Catherine R. Jutzeler, Bastian Rieck
:
Back to the basics with inclusion of clinical domain knowledge - A simple, scalable and effective model of Alzheimer's Disease classification. 730-754 - Yen Nhi Truong Vu, Richard Wang, Niranjan Balachandar, Can Liu, Andrew Y. Ng, Pranav Rajpurkar:

MedAug: Contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation. 755-769 - Shreyas Bhave, Adler J. Perotte:

Point Processes for Competing Observations with Recurrent Networks (POPCORN): A Generative Model of EHR Data. 770-789

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














