


default search action
17th ICML 2000: Stanford, CA, USA
- Pat Langley:

Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000. Morgan Kaufmann 2000, ISBN 1-55860-707-2 - Ricardo Aler, Daniel Borrajo, Pedro Isasi:

Knowledge Representation Issues in Control Knowledge Learning. ICML 2000: 1-8 - Erin L. Allwein, Robert E. Schapire, Yoram Singer:

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. ICML 2000: 9-16 - Brigham S. Anderson, Andrew W. Moore, David Cohn:

A Nonparametric Approach to Noisy and Costly Optimization. ICML 2000: 17-24 - Charles W. Anderson, Bruce A. Draper, David A. Peterson:

Behavioral Cloning of Student Pilots with Modular Neural Networks. ICML 2000: 25-32 - Bikramjit Banerjee, Sandip Debnath, Sandip Sen:

Combining Multiple Perspectives. ICML 2000: 33-40 - Jonathan Baxter, Peter L. Bartlett:

Reinforcement Learning in POMDP's via Direct Gradient Ascent. ICML 2000: 41-48 - Stephen D. Bay, Michael J. Pazzani:

Characterizing Model Erros and Differences. ICML 2000: 49-56 - Kristin P. Bennett, Erin J. Bredensteiner:

Duality and Geometry in SVM Classifiers. ICML 2000: 57-64 - Kristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor:

A Column Generation Algorithm For Boosting. ICML 2000: 65-72 - Mihai Boicu, Gheorghe Tecuci, Dorin Marcu, Michael Bowman, Ping Shyr, Florin Ciucu, Cristian Levcovici:

Disciple-COA: From Agent Programming to Agent Teaching. ICML 2000: 73-80 - Antony Francis Bowers, Christophe G. Giraud-Carrier, John W. Lloyd:

Classification of Individuals with Complex Structure. ICML 2000: 81-88 - Michael H. Bowling:

Convergence Problems of General-Sum Multiagent Reinforcement Learning. ICML 2000: 89-94 - Matthew Brand:

Finding Variational Structure in Data by Cross-Entropy Optimization. ICML 2000: 95-102 - Jake D. Brutlag, Christopher Meek:

Challenges of the Email Domain for Text Classification. ICML 2000: 103-110 - Colin Campbell, Nello Cristianini, Alexander J. Smola:

Query Learning with Large Margin Classifiers. ICML 2000: 111-118 - William M. Campbell, Kari Torkkola, Sreeream V. Balakrishnan:

Dimension Reduction Techniques for Training Polynomial Networks. ICML 2000: 119-126 - Huan Chang, David Cohn, Andrew McCallum:

Learning to Create Customized Authority Lists. ICML 2000: 127-134 - Yong S. Choi, Suk I. Yoo:

Learning to Select Text Databases with Neural Nets. ICML 2000: 135-142 - Eric Chown, Thomas G. Dietterich:

A Divide and Conquer Approach to Learning from Prior Knowledge. ICML 2000: 143-150 - Jefferson A. Coelho Jr., Roderic A. Grupen:

Learning in Non-stationary Conditions: A Control Theoretic Approach. ICML 2000: 151-158 - William W. Cohen:

Automatically Extracting Features for Concept Learning from the Web. ICML 2000: 159-166 - David Cohn, Huan Chang:

Learning to Probabilistically Identify Authoritative Documents. ICML 2000: 167-174 - Michael Collins:

Discriminative Reranking for Natural Language Parsing. ICML 2000: 175-182 - Simon Colton, Alan Bundy, Toby Walsh:

Automatic Identification of Mathematical Concepts. ICML 2000: 183-190 - Jörg Conradt, Gaurav Tevatia, Sethu Vijayakumar, Stefan Schaal:

On-line Learning for Humanoid Robot Systems. ICML 2000: 191-198 - Mark W. Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner:

Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes. ICML 2000: 199-206 - Daniela Pucci de Farias, Benjamin Van Roy:

Fixed Points of Approximate Value Iteration and Temporal-Difference Learning. ICML 2000: 207-214 - Gerald DeJong:

Hidden Strengths and Limitations: An Empirical Investigation of Reinforcement Learning. ICML 2000: 215-222 - Pedro M. Domingos:

Bayesian Averaging of Classifiers and the Overfitting Problem. ICML 2000: 223-230 - Pedro M. Domingos:

A Unifeid Bias-Variance Decomposition and its Applications. ICML 2000: 231-238 - Chris Drummond, Robert C. Holte:

Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria. ICML 2000: 239-246 - Jennifer G. Dy, Carla E. Brodley:

Feature Subset Selection and Order Identification for Unsupervised Learning. ICML 2000: 247-254 - Eleazar Eskin:

Anomaly Detection over Noisy Data using Learned Probability Distributions. ICML 2000: 255-262 - Floriana Esposito, Nicola Fanizzi, Stefano Ferilli, Giovanni Semeraro:

Ideal Theory Refinement under Object Identity. ICML 2000: 263-270 - Theodoros Evgeniou, Luis Pérez-Breva, Massimiliano Pontil, Tomaso A. Poggio:

Bounds on the Generalization Performance of Kernel Machine Ensembles. ICML 2000: 271-278 - Alan Fern, Robert Givan:

Online Ensemble Learning: An Empirical Study. ICML 2000: 279-286 - Claude-Nicolas Fiechter, Seth Rogers:

Learning Subjective Functions with Large Margins. ICML 2000: 287-294 - Jürgen Forster, Manfred K. Warmuth:

Relative Loss Bounds for Temporal-Difference Learning. ICML 2000: 295-302 - Rayid Ghani:

Using Error-Correcting Codes for Text Classification. ICML 2000: 303-310 - Attilio Giordana, Lorenza Saitta, Michèle Sebag, Marco Botta:

Analyzing Relational Learning in the Phase Transition Framework. ICML 2000: 311-318 - Dani Goldberg, Maja J. Mataric:

Learning Multiple Models for Reward Maximization. ICML 2000: 319-326 - Sally A. Goldman, Yan Zhou:

Enhancing Supervised Learning with Unlabeled Data. ICML 2000: 327-334 - Geoffrey J. Gordon, Andrew W. Moore:

Learning Filaments. ICML 2000: 335-342 - Gregory Z. Grudic, Lyle H. Ungar:

Localizing Policy Gradient Estimates to Action Transition. ICML 2000: 343-350 - Keith B. Hall, Thomas Hofmann:

Learning Curved Multinomial Subfamilies for Natural Language Processing and Information Retrieval. ICML 2000: 351-358 - Mark A. Hall:

Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. ICML 2000: 359-366 - Tom Heskes:

Empirical Bayes for Learning to Learn. ICML 2000: 367-374 - Véronique Hoste, Walter Daelemans, Erik F. Tjong Kim Sang, Steven Gillis:

Meta-Learning for Phonemic Annotation of Corpora. ICML 2000: 375-382 - Dean F. Hougen, Maria L. Gini, James R. Slagle:

An Integrated Connectionist Approach to Reinforcement Learning for Robotic Control. ICML 2000: 383-390 - Nicholas R. Howe:

Data as Ensembles of Records: Representation and Comparison. ICML 2000: 391-398 - Chun-Nan Hsu, Hung-Ju Huang, Tzu-Tsung Wong:

Why Discretization Works for Naive Bayesian Classifiers. ICML 2000: 399-406 - Junling Hu, Michael P. Wellman:

Experimental Results on Q-Learning for General-Sum Stochastic Games. ICML 2000: 407-414 - Yi-Cheng Huang, Bart Selman, Henry A. Kautz:

Learning Declarative Control Rules for Constraint-BAsed Planning. ICML 2000: 415-422 - Fan Jiang, Michael L. Littman:

Approximate Dimension Equalization in Vector-based Information Retrieval. ICML 2000: 423-430 - Thorsten Joachims:

Estimating the Generalization Performance of an SVM Efficiently. ICML 2000: 431-438 - Peter Ju, Leslie Pack Kaelbling, Yoram Singer:

State-based Classification of Finger Gestures from Electromyographic Signals. ICML 2000: 439-446 - Susumu Katayama, Hajime Kimura, Shigenobu Kobayashi:

A Universal Generalization for Temporal-Difference Learning Using Haar Basis Functions. ICML 2000: 447-454 - Cenk Kaynak, Ethem Alpaydin:

MultiStage Cascading of Multiple Classifiers: One Man's Noise is Another Man's Data. ICML 2000: 455-462 - Jeffrey O. Kephart, Gerald Tesauro:

Pseudo-convergent Q-Learning by Competitive Pricebots. ICML 2000: 463-470 - Roni Khardon:

Learning Horn Expressions with LogAn-H. ICML 2000: 471-478 - Zu Whan Kim, Ramakant Nevatia:

Learning Bayesian Networks for Diverse and Varying numbers of Evidence Sets. ICML 2000: 479-486 - Ralf Klinkenberg, Thorsten Joachims:

Detecting Concept Drift with Support Vector Machines. ICML 2000: 487-494 - Paul Komarek, Andrew W. Moore:

A Dynamic Adaptation of AD-trees for Efficient Machine Learning on Large Data Sets. ICML 2000: 495-502 - Miroslav Kubat, Martin Cooperson Jr.:

Voting Nearest-Neighbor Subclassifiers. ICML 2000: 503-510 - Michail G. Lagoudakis, Michael L. Littman:

Algorithm Selection using Reinforcement Learning. ICML 2000: 511-518 - Terran Lane, Carla E. Brodley:

Data Reduction Techniques for Instance-Based Learning from Human/Computer Interface Data. ICML 2000: 519-526 - Tessa A. Lau, Pedro M. Domingos, Daniel S. Weld:

Version Space Algebra and its Application to Programming by Demonstration. ICML 2000: 527-534 - Martin Lauer, Martin A. Riedmiller:

An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent Systems. ICML 2000: 535-542 - Cen Li, Gautam Biswas:

A Bayesian Approach to Temporal Data Clustering using Hidden Markov Models. ICML 2000: 543-550 - Jinyan Li, Kotagiri Ramamohanarao, Guozhu Dong:

The Space of Jumping Emerging Patterns and Its Incremental Maintenance Algorithms. ICML 2000: 551-558 - Yi Li:

Selective Voting for Perception-like Online Learning. ICML 2000: 559-566 - Marcus A. Maloof:

An Initial Study of an Adaptive Hierarchical Vision System. ICML 2000: 567-574 - Hiroshi Mamitsuka, Naoki Abe:

Efficient Mining from Large Databases by Query Learning. ICML 2000: 575-582 - Dragos D. Margineantu, Thomas G. Dietterich:

Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers. ICML 2000: 583-590 - Andrew McCallum, Dayne Freitag, Fernando C. N. Pereira:

Maximum Entropy Markov Models for Information Extraction and Segmentation. ICML 2000: 591-598 - Geoffrey J. McLachlan, David Peel:

Mixtures of Factor Analyzers. ICML 2000: 599-606 - Andrew R. Mitchell:

"Boosting'' a Positive-Data-Only Learner. ICML 2000: 607-614 - Robert Moll, Theodore J. Perkins, Andrew G. Barto:

Machine Learning for Subproblem Selection. ICML 2000: 615-622 - Jun Morimoto, Kenji Doya:

Acquisition of Stand-up Behavior by a Real Robot using Hierarchical Reinforcement Learning. ICML 2000: 623-630 - Stephen H. Muggleton, Christopher H. Bryant, Ashwin Srinivasan:

Learning Chomsky-like Grammars for Biological Sequence Families. ICML 2000: 631-638 - Matthew D. Mullin, Rahul Sukthankar:

Complete Cross-Validation for Nearest Neighbor Classifiers. ICML 2000: 639-646 - Rémi Munos, Andrew W. Moore:

Rates of Convergence for Variable Resolution Schemes in Optimal Control. ICML 2000: 647-654 - Kary L. Myers, Michael J. Kearns, Satinder Singh, Marilyn A. Walker:

A Boosting Approach to Topic Spotting on Subdialogues. ICML 2000: 655-662 - Andrew Y. Ng, Stuart Russell:

Algorithms for Inverse Reinforcement Learning. ICML 2000: 663-670 - Daniel Nikovski, Illah R. Nourbakhsh:

Learning Probabilistic Models for Decision-Theoretic Navigation of Mobile Robots. ICML 2000: 671-678 - Partha Niyogi, Narendra Karmarkar:

An Approach to Data Reduction and Clustering with Theoretical Guarantees. ICML 2000: 679-686 - Tadashi Nomoto, Yuji Matsumoto:

Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse. ICML 2000: 687-694 - Seishi Okamoto, Nobuhiro Yugami:

Generalized Average-Case Analyses of the Nearest Neighbor Algorithm. ICML 2000: 695-702 - Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum:

FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness. ICML 2000: 703-710 - Alberto Paccanaro, Geoffrey E. Hinton:

Learning Distributed Representations by Mapping Concepts and Relations into a Linear Space. ICML 2000: 711-718 - Georgios Paliouras, Christos Papatheodorou, Vangelis Karkaletsis, Constantine D. Spyropoulos:

Clustering the Users of Large Web Sites into Communities. ICML 2000: 719-726 - Dan Pelleg, Andrew W. Moore:

X-means: Extending K-means with Efficient Estimation of the Number of Clusters. ICML 2000: 727-734 - David M. Pennock, Pedrito Maynard-Reid II, C. Lee Giles, Eric Horvitz:

A Normative Examination of Ensemble Learning Algorithms. ICML 2000: 735-742 - Bernhard Pfahringer, Hilan Bensusan, Christophe G. Giraud-Carrier:

Meta-Learning by Landmarking Various Learning Algorithms. ICML 2000: 743-750 - Justus H. Piater, Roderic A. Grupen:

Constructive Feature Learning and the Development of Visual Expertise. ICML 2000: 751-758 - Doina Precup, Richard S. Sutton, Satinder Singh:

Eligibility Traces for Off-Policy Policy Evaluation. ICML 2000: 759-766 - Jette Randløv:

Shaping in Reinforcement Learning by Changing the Physics of the Problem. ICML 2000: 767-774 - Jette Randløv, Andrew G. Barto, Michael T. Rosenstein:

Combining Reinforcement Learning with a Local Control Algorithm. ICML 2000: 775-782 - Stuart I. Reynolds:

Adaptive Resolution Model-Free Reinforcement Learning: Decision Boundary Partitioning. ICML 2000: 783-790 - Corinna Richter, Jörg Stachowiak:

Knowledge Propagation in Model-based Reinforcement Learning Tasks. ICML 2000: 791-798 - Charles R. Rosenberg:

Image Color Constancy Using EM and Cached Statistics. ICML 2000: 799-806 - Malcolm Ryan, Mark D. Reid:

Learning to Fly: An Application of Hierarchical Reinforcement Learning. ICML 2000: 807-814 - Matthias Rychetsky, John Shawe-Taylor, Manfred Glesner:

Direct Bayes Point Machines. ICML 2000: 815-822 - Scott Sanner, John R. Anderson, Christian Lebiere, Marsha C. Lovett:

Achieving Efficient and Cognitively Plausible Learning in Backgammon. ICML 2000: 823-830 - Tobias Scheffer:

Predicting the Generalization Performance of Cross Validatory Model Selection Criteria. ICML 2000: 831-838 - Greg Schohn, David Cohn:

Less is More: Active Learning with Support Vector Machines. ICML 2000: 839-846 - Dale Schuurmans, Finnegan Southey:

An Adaptive Regularization Criterion for Supervised Learning. ICML 2000: 847-854 - Marc Sebban, Richard Nock:

Instance Pruning as an Information Preserving Problem. ICML 2000: 855-862 - Richard B. Segal, Jeffrey O. Kephart:

Incremental Learning in SwiftFile. ICML 2000: 863-870 - Thomas R. Shultz, François Rivest:

Using Knowledge to Speed Learning: A Comparison of Knowledge-based Cascade-correlation and Multi-task Learning. ICML 2000: 871-878 - Ricardo Bezerra de Andrade e Silva, Teresa Bernarda Ludermir:

Obtaining Simplified Rule Bases by Hybrid Learning. ICML 2000: 879-886 - Bryan Singer, Manuela M. Veloso:

Learning to Predict Performance from Formula Modeling and Training Data. ICML 2000: 887-894 - Seán Slattery, Tom M. Mitchell:

Discovering Test Set Regularities in Relational Domains. ICML 2000: 895-902 - William D. Smart, Leslie Pack Kaelbling:

Practical Reinforcement Learning in Continuous Spaces. ICML 2000: 903-910 - Alexander J. Smola, Bernhard Schölkopf:

Sparse Greedy Matrix Approximation for Machine Learning. ICML 2000: 911-918 - Leen-Kiat Soh, Costas Tsatsoulis:

Using Learning by Discovery to Segment Remotely Sensed Images. ICML 2000: 919-926 - Manu Sridharan, Gerald Tesauro:

Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions. ICML 2000: 927-934 - Peter Stone:

TPOT-RL Applied to Network Routing. ICML 2000: 935-942 - Malcolm J. A. Strens:

A Bayesian Framework for Reinforcement Learning. ICML 2000: 943-950 - Luis Talavera:

Feature Selection and Incremental Learning of Probabilistic Concept Hierarchies. ICML 2000: 951-958 - Astro Teller, Manuela M. Veloso:

Efficient Learning Through Evolution: Neural Programming and Internal Reinforcement. ICML 2000: 959-966 - Loo-Nin Teow, Kia-Fock Loe:

Selection of Support Vector Kernel Parameters for Improved Generalization. ICML 2000: 967-974 - Franck Thollard, Pierre Dupont, Colin de la Higuera:

Probabilistic DFA Inference using Kullback-Leibler Divergence and Minimality. ICML 2000: 975-982 - Kai Ming Ting:

A Comparative Study of Cost-Sensitive Boosting Algorithms. ICML 2000: 983-990 - Ljupco Todorovski, Saso Dzeroski, Ashwin Srinivasan, Jonathan P. Whiteley, David Gavaghan:

Discovering the Structure of Partial Differential Equations from Example Behaviour. ICML 2000: 991-998 - Simon Tong, Daphne Koller:

Support Vector Machine Active Learning with Application sto Text Classification. ICML 2000: 999-1006 - Luís Torgo:

Partial Linear Trees. ICML 2000: 1007-1014 - Kari Torkkola, William M. Campbell:

Mutual Information in Learning Feature Transformations. ICML 2000: 1015-1022 - Geoffrey G. Towell:

Local Expert Autoassociators for Anomaly Detection. ICML 2000: 1023-1030 - Geoffrey G. Towell, Thomas Petsche, Michael R. Miller:

Learning Priorities From Noisy Examples. ICML 2000: 1031-1038 - Shivakumar Vaithyanathan, Byron Dom:

Hierarchical Unsupervised Learning. ICML 2000: 1039-1046 - Tim Van Allen, Russell Greiner:

Model Selection Criteria for Learning Belief Nets: An Empirical Comparison. ICML 2000: 1047-1054 - Antal van den Bosch, Jakub Zavrel:

Unpacking Multi-valued Symbolic Features and Classes in Memory-Based Language Learning. ICML 2000: 1055-1062 - Menno van Zaanen:

Bootstrapping Syntax and Recursion using Alginment-Based Learning. ICML 2000: 1063-1070 - Stefan Veeser:

An Evolutionary Approach to Evidence-Based Learning of Deterministic Finite Automata. ICML 2000: 1071-1078 - Sethu Vijayakumar, Stefan Schaal:

Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space. ICML 2000: 1079-1086 - Ricardo Vilalta, Daniel Oblinger:

A Quantification of Distance Bias Between Evaluation Metrics In Classification. ICML 2000: 1087-1094 - Slobodan Vucetic, Zoran Obradovic:

Discovering Homogeneous Regions in Spatial Data through Competition. ICML 2000: 1095-1102 - Kiri Wagstaff, Claire Cardie:

Clustering with Instance-level Constraints. ICML 2000: 1103-1110 - Marilyn A. Walker, Jeremy H. Wright, Irene Langkilde:

Using Natural Language Processing and discourse Features to Identify Understanding Errors. ICML 2000: 1111-1118 - Jun Wang, Jean-Daniel Zucker:

Solving the Multiple-Instance Problem: A Lazy Learning Approach. ICML 2000: 1119-1126 - Takashi Washio, Hiroshi Motoda, Yuji Niwa:

Enhancing the Plausibility of Law Equation Discovery. ICML 2000: 1127-1134 - Sholom M. Weiss, Nitin Indurkhya:

Lightweight Rule Induction. ICML 2000: 1135-1142 - Machiel Westerdijk, Wim Wiegerinck:

Classification with Multiple Latent Variable Models using Maximum Entropy Discrimination. ICML 2000: 1143-1150 - Marco A. Wiering:

Multi-Agent Reinforcement Leraning for Traffic Light Control. ICML 2000: 1151-1158 - Christopher K. I. Williams, Matthias W. Seeger:

The Effect of the Input Density Distribution on Kernel-based Classifiers. ICML 2000: 1159-1166 - Yiming Yang, Tom Ault, Thomas Pierce:

Combining Multiple Learning Strategies for Effective Cross Validation. ICML 2000: 1167-1174 - Olcay Taner Yildiz, Ethem Alpaydin:

Linear Discriminant Trees. ICML 2000: 1175-1182 - Sarah Zelikovitz, Haym Hirsh:

Improving Short-Text Classification using Unlabeled Data for Classification Problems. ICML 2000: 1191-1198 - Blaz Zupan, Ivan Bratko, Marko Bohanec, Janez Demsar:

Induction of Concept Hierarchies from Noisy Data. ICML 2000: 1199-1206 - Pat Langley:

Crafting Papers on Machine Learning. ICML 2000: 1207-1216

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














