


default search action
"Reliability of Machine Learning in Eliminating Data Redundancy of ..."
Yauhen Statsenko et al. (2022)
- Yauhen Statsenko

, Tetiana Habuza
, Tatsiana Talako
, Tetiana Kurbatova
, Gillian Lylian Simiyu
, Darya Smetanina
, Juana Sido
, Dana Sharif Qandil
, Sarah Meribout
, Juri G. Gelovani
, Klaus Neidl-Van Gorkom
, Taleb M. Almansoori
, Fatmah Al Zahmi
, Tom Loney
, Anthony Bedson
, Nerissa Naidoo
, Alireza Dehdashtian
, Milos Ljubisavljevic
, Jamal Al Koteesh
, Karuna M. Das
:
Reliability of Machine Learning in Eliminating Data Redundancy of Radiomics and Reflecting Pathophysiology in COVID-19 Pneumonia: Impact of CT Reconstruction Kernels on Accuracy. IEEE Access 10: 120901-120921 (2022)

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














