default search action
Ulf Johansson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j11]Helena Löfström, Tuwe Löfström, Ulf Johansson, Cecilia Sönströd:
Calibrated explanations: With uncertainty information and counterfactuals. Expert Syst. Appl. 246: 123154 (2024) - 2023
- [c97]Amr Alkhatib, Henrik Boström, Sofiane Ennadir, Ulf Johansson:
Approximating Score-based Explanation Techniques Using Conformal Regression. COPA 2023: 450-469 - [c96]Ulf Johansson, Cecilia Sönströd, Tuwe Löfström, Henrik Boström:
Confidence Classifiers with Guaranteed Accuracy or Precision. COPA 2023: 513-533 - [c95]Tuwe Löfström, Alexander Bondaletov, Artem Ryasik, Henrik Boström, Ulf Johansson:
Tutorial on using Conformal Predictive Systems in KNIME. COPA 2023: 602-620 - [c94]Ulf Johansson, Tuwe Löfström, Cecilia Sönströd, Helena Löfström:
Conformal Prediction for Accuracy Guarantees in Classification with Reject Option. MDAI 2023: 133-145 - [i5]Helena Löfström, Tuwe Löfström, Ulf Johansson, Cecilia Sönströd:
Calibrated Explanations: with Uncertainty Information and Counterfactuals. CoRR abs/2305.02305 (2023) - [i4]Ulf Johansson, Tuwe Löfström, Cecilia Sönströd:
Well-Calibrated Probabilistic Predictive Maintenance using Venn-Abers. CoRR abs/2306.06642 (2023) - [i3]Amr Alkhatib, Henrik Boström, Sofiane Ennadir, Ulf Johansson:
Approximating Score-based Explanation Techniques Using Conformal Regression. CoRR abs/2308.11975 (2023) - [i2]Tuwe Löfström, Helena Löfström, Ulf Johansson, Cecilia Sönströd:
Calibrated Explanations for Regression. CoRR abs/2308.16245 (2023) - 2022
- [j10]Ulf Johansson, Cecilia Sönströd, Tuwe Löfström, Henrik Boström:
Rule extraction with guarantees from regression models. Pattern Recognit. 126: 108554 (2022) - [c93]Helena Löfström, Karl Hammar, Ulf Johansson:
A Meta Survey of Quality Evaluation Criteria in Explanation Methods. CAiSE Forum 2022: 55-63 - [c92]Ulf Johansson, Henrik Boström, Khuong An Nguyen, Zhiyuan Luo, Lars Carlsson:
Preface. COPA 2022: 1-3 - [c91]Tuwe Löfström, Artem Ryasik, Ulf Johansson:
Tutorial for using conformal prediction in KNIME. COPA 2022: 4-23 - [c90]Amr Alkhatib, Henrik Boström, Ulf Johansson:
Assessing Explanation Quality by Venn Prediction. COPA 2022: 42-54 - [c89]Ulf Johansson, Tuwe Löfström, Niclas Ståhl:
Well-Calibrated Rule Extractors. COPA 2022: 72-91 - [c88]Dirar Sweidan, Ulf Johansson, Anders Gidenstam, Beatrice Alenljung:
Predicting Customer Churn in Retailing. ICMLA 2022: 635-640 - [c87]Ulf Johansson, Erik Wilderoth, Arsalan Sattari:
How Analytics is Changing Ice Hockey. LINHAC 2022: 49-59 - [c86]Erik Wilderoth, Ulf Johansson, Arsalan Sattari:
Where not to lose the puck. LINHAC 2022: 109-117 - [e1]Ulf Johansson, Henrik Boström, Khuong An Nguyen, Zhiyuan Luo, Lars Carlsson:
Conformal and Probabilistic Prediction with Applications, 24-26 August 2022, Brighton, UK. Proceedings of Machine Learning Research 179, PMLR 2022 [contents] - [i1]Helena Löfström, Karl Hammar, Ulf Johansson:
A Meta Survey of Quality Evaluation Criteria in Explanation Methods. CoRR abs/2203.13929 (2022) - 2021
- [c85]Henrik Boström, Ulf Johansson, Tuwe Löfström:
Mondrian conformal predictive distributions. COPA 2021: 24-38 - [c84]Ulf Johansson, Tuwe Löfström, Henrik Boström:
Calibrating multi-class models. COPA 2021: 111-130 - [c83]Simon Arvidsson, Patrick Gabrielsson, Ulf Johansson:
Texture Mapping of Flags onto Polandball Characters using Convolutional Neural Nets. IJCNN 2021: 1-7 - [c82]Ulf Johansson, Tuwe Löfström, Henrik Boström:
Well-Calibrated and Sharp Interpretable Multi-Class Models. MDAI 2021: 193-204 - [c81]Arsalan Sattari, Ulf Johansson, Erik Wilderoth, Jasmin Jakupovic, Peter Larsson-Green:
The Interpretable Representation of Football Player Roles Based on Passing/Receiving Patterns. MLSA@PKDD/ECML 2021: 62-76 - [c80]Ulf Johansson, Henrik Boström, Tuwe Löfström:
Investigating Normalized Conformal Regressors. SSCI 2021: 1-8 - 2020
- [j9]Henrik Linusson, Ulf Johansson, Henrik Boström:
Efficient conformal predictor ensembles. Neurocomputing 397: 266-278 (2020) - [c79]Henrik Boström, Ulf Johansson:
Mondrian conformal regressors. COPA 2020: 114-133 - [c78]Ulf Johansson, Tuwe Löfström:
Well-calibrated and specialized probability estimation trees. SDM 2020: 415-423
2010 – 2019
- 2019
- [j8]Rubén Buendía, Thierry Kogej, Ola Engkvist, Lars Carlsson, Henrik Linusson, Ulf Johansson, Paolo Toccaceli, Ernst Ahlberg:
Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors. J. Chem. Inf. Model. 59(3): 1230-1237 (2019) - [j7]Ulf Johansson, Tuve Löfström, Henrik Linusson, Henrik Boström:
Efficient Venn predictors using random forests. Mach. Learn. 108(3): 535-550 (2019) - [c77]Chandadevi Giri, Ulf Johansson, Tuwe Löfström:
Predictive Modeling of Campaigns to Quantify Performance in Fashion Retail Industry. IEEE BigData 2019: 2267-2273 - [c76]Ulf Johansson, Tuwe Löfström, Henrik Boström, Cecilia Sönströd:
Interpretable and specialized conformal predictors. COPA 2019: 3-22 - [c75]Henrik Boström, Ulf Johansson, Anders Vesterberg:
Predicting with Confidence from Survival Data. COPA 2019: 123-141 - [c74]Ulf Johansson, Cecilia Sönströd, Tuwe Löfström, Henrik Boström:
Customized Interpretable Conformal Regressors. DSAA 2019: 221-230 - [c73]Ulf Johansson, Patrick Gabrielsson:
Are Traditional Neural Networks Well-Calibrated? IJCNN 2019: 1-8 - [c72]Ulf Johansson, Tuwe Löfström, Henrik Boström:
Calibrating Probability Estimation Trees using Venn-Abers Predictors. SDM 2019: 28-36 - 2018
- [j6]Ulf Johansson, Henrik Linusson, Tuve Löfström, Henrik Boström:
Interpretable regression trees using conformal prediction. Expert Syst. Appl. 97: 394-404 (2018) - [c71]Ulf Johansson, Tuwe Löfström, Håkan Sundell, Henrik Linusson, Anders Gidenstam, Henrik Boström:
Venn predictors for well-calibrated probability estimation trees. COPA 2018: 3-14 - [c70]Henrik Linusson, Ulf Johansson, Henrik Boström, Tuve Löfström:
Classification with Reject Option Using Conformal Prediction. PAKDD (1) 2018: 94-105 - 2017
- [j5]Henrik Boström, Henrik Linusson, Tuve Löfström, Ulf Johansson:
Accelerating difficulty estimation for conformal regression forests. Ann. Math. Artif. Intell. 81(1-2): 125-144 (2017) - [c69]Rikard König, Ulf Johansson, Maria Riveiro, Peter Brattberg:
Modeling Golf Player Skill Using Machine Learning. CD-MAKE 2017: 275-294 - [c68]Henrik Linusson, Ulf Norinder, Henrik Boström, Ulf Johansson, Tuve Löfström:
On the Calibration of Aggregated Conformal Predictors. COPA 2017: 154-173 - [c67]Ernst Ahlberg, Susanne Winiwarter, Henrik Boström, Henrik Linusson, Tuve Löfström, Ulf Norinder, Ulf Johansson, Ola Engkvist, Oscar Hammar, Claus Bendtsen, Lars Carlsson:
Using Conformal Prediction to Prioritize Compound Synthesis in Drug Discovery. COPA 2017: 174-184 - [c66]Ulf Johansson, Henrik Linusson, Tuve Löfström, Henrik Boström:
Model-agnostic nonconformity functions for conformal classification. IJCNN 2017: 2072-2079 - 2016
- [c65]Henrik Boström, Henrik Linusson, Tuve Löfström, Ulf Johansson:
Evaluation of a Variance-Based Nonconformity Measure for Regression Forests. COPA 2016: 75-89 - [c64]Henrik Linusson, Ulf Johansson, Henrik Boström, Tuve Löfström:
Reliable Confidence Predictions Using Conformal Prediction. PAKDD (1) 2016: 77-88 - 2015
- [j4]Tuve Löfström, Henrik Boström, Henrik Linusson, Ulf Johansson:
Bias reduction through conditional conformal prediction. Intell. Data Anal. 19(6): 1355-1375 (2015) - [c63]Maria Riveiro, Anders Dahlbom, Rikard König, Ulf Johansson, Peter Brattberg:
Supporting Golf Coaching and Swing Instruction with Computer-Based Training Systems. HCI (24) 2015: 279-290 - [c62]Rikard König, Ulf Johansson, Ann Lindqvist, Peter Brattberg:
Interesting Regression- and Model Trees Through Variable Restrictions. KDIR 2015: 281-292 - [c61]Ulf Johansson, Cecilia Sönströd, Henrik Linusson:
Efficient conformal regressors using bagged neural nets. IJCNN 2015: 1-8 - [c60]Lars Carlsson, Ernst Ahlberg, Henrik Boström, Ulf Johansson, Henrik Linusson:
Modifications to p-Values of Conformal Predictors. SLDS 2015: 251-259 - [c59]Ulf Johansson, Ernst Ahlberg, Henrik Boström, Lars Carlsson, Henrik Linusson, Cecilia Sönströd:
Handling Small Calibration Sets in Mondrian Inductive Conformal Regressors. SLDS 2015: 271-280 - [c58]Patrick Gabrielsson, Ulf Johansson:
High-Frequency Equity Index Futures Trading Using Recurrent Reinforcement Learning with Candlesticks. SSCI 2015: 734-741 - 2014
- [j3]Ulf Johansson, Henrik Boström, Tuve Löfström, Henrik Linusson:
Regression conformal prediction with random forests. Mach. Learn. 97(1-2): 155-176 (2014) - [c57]Ulf Johansson, Cecilia Sönströd, Henrik Linusson, Henrik Boström:
Regression trees for streaming data with local performance guarantees. IEEE BigData 2014: 461-470 - [c56]Ulf Johansson, Cecilia Sönströd, Rikard König:
Accurate and interpretable regression trees using oracle coaching. CIDM 2014: 194-201 - [c55]Rikard König, Ulf Johansson:
Rule extraction using genetic programming for accurate sales forecasting. CIDM 2014: 210-216 - [c54]Patrick Gabrielsson, Ulf Johansson, Rikard König:
Co-evolving online high-frequency trading strategies using grammatical evolution. CIFEr 2014: 473-480 - [c53]Henrik Linusson, Ulf Johansson, Henrik Boström, Tuve Löfström:
Efficiency Comparison of Unstable Transductive and Inductive Conformal Classifiers. AIAI Workshops 2014: 261-270 - [c52]Ulf Johansson, Rikard König, Henrik Linusson, Tuve Löfström, Henrik Boström:
Rule Extraction with Guaranteed Fidelity. AIAI Workshops 2014: 281-290 - [c51]Henrik Linusson, Ulf Johansson, Tuve Löfström:
Signed-Error Conformal Regression. PAKDD (1) 2014: 224-236 - 2013
- [c50]Ulf Johansson, Rikard König, Tuve Löfström, Henrik Boström:
Evolved decision trees as conformal predictors. IEEE Congress on Evolutionary Computation 2013: 1794-1801 - [c49]Ulf Johansson, Tuve Löfström, Henrik Boström:
Overproduce-and-select: The grim reality. CIEL 2013: 52-59 - [c48]Patrick Gabrielsson, Rikard König, Ulf Johansson:
Evolving Hierarchical Temporal Memory-Based Trading Models. EvoApplications 2013: 213-222 - [c47]Ulf Johansson, Henrik Boström, Tuve Löfström:
Conformal Prediction Using Decision Trees. ICDM 2013: 330-339 - [c46]Ulf Johansson, Tuve Löfström, Henrik Boström:
Random brains. IJCNN 2013: 1-8 - [c45]Tuve Löfström, Ulf Johansson, Henrik Boström:
Effective utilization of data in inductive conformal prediction using ensembles of neural networks. IJCNN 2013: 1-8 - 2012
- [j2]Ulf Johansson, Cecilia Sönströd, Tuve Löfström, Henrik Boström:
Obtaining accurate and comprehensible classifiers using oracle coaching. Intell. Data Anal. 16(2): 247-263 (2012) - [c44]Patrick Gabrielsson, Rikard König, Ulf Johansson:
Hierarchical Temporal Memory-based algorithmic trading of financial markets. CIFEr 2012: 1-8 - [c43]Ulf Johansson, Tuve Löfström:
Producing implicit diversity in ANN ensembles. IJCNN 2012: 1-8 - 2011
- [c42]Cecilia Sönströd, Ulf Johansson, Rikard König:
Evolving accurate and comprehensible classification rules. IEEE Congress on Evolutionary Computation 2011: 1436-1443 - [c41]Ulf Johansson, Cecilia Sönströd, Tuve Löfström:
One tree to explain them all. IEEE Congress on Evolutionary Computation 2011: 1444-1451 - [c40]Ulf Johansson, Tuve Löfström, Cecilia Sönströd:
Locally induced predictive models. SMC 2011: 1735-1740 - 2010
- [c39]Rikard König, Ulf Johansson, Tuve Löfström, Lars Niklasson:
Improving GP classification performance by injection of decision trees. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c38]Ulf Johansson, Rikard König, Tuve Löfström, Lars Niklasson:
Using Imaginary Ensembles to Select GP Classifiers. EuroGP 2010: 278-288 - [c37]Ulf Johansson, Rikard König, Lars Niklasson:
Genetic rule extraction optimizing brier score. GECCO 2010: 1007-1014 - [c36]Ulf Johansson, Cecilia Sönströd, Tuve Löfström:
Oracle Coached Decision Trees and Lists. IDA 2010: 67-78 - [c35]Tuve Löfström, Ulf Johansson, Henrik Boström:
Comparing methods for generating diverse ensembles of artificial neural networks. IJCNN 2010: 1-6 - [c34]Cecilia Sönströd, Ulf Johansson, Henrik Boström, Ulf Norinder:
Pin-pointing concept descriptions. SMC 2010: 2956-2963 - [p2]Ulf Johansson, Rikard König, Lars Niklasson:
Genetically Evolved kNN Ensembles. Data Mining 2010: 299-313
2000 – 2009
- 2009
- [c33]Ulf Johansson, Cecilia Sönströd, Tuve Löfström, Rikard König:
Using genetic programming to obtain implicit diversity. IEEE Congress on Evolutionary Computation 2009: 2454-2459 - [c32]Ulf Johansson, Lars Niklasson:
Evolving decision trees using oracle guides. CIDM 2009: 238-244 - [c31]Tuve Löfström, Ulf Johansson, Henrik Boström:
Ensemble member selection using multi-objective optimization. CIDM 2009: 245-251 - [c30]Ulf Johansson, Cecilia Sönströd:
Fish or Shark - Data Mining Online Poker. DMIN 2009: 97-103 - [c29]Cecilia Sönströd, Ulf Johansson, Tuve Löfström:
Evaluating Algorithms for Concept Description. DMIN 2009: 354-360 - [p1]Ulf Johansson, Rikard König, Tuve Löfström, Cecilia Sönströd, Lars Niklasson:
Post-processing Evolved Decision Trees. Foundations of Computational Intelligence (4) 2009: 149-164 - 2008
- [c28]Ulf Johansson, Rikard König, Tuve Löfström, Lars Niklasson:
Increasing rule extraction accuracy by post-processing GP trees. IEEE Congress on Evolutionary Computation 2008: 3005-3010 - [c27]Ulf Johansson, Rikard König, Lars Niklasson:
Evolving a Locally Optimized Instance Based Learner. DMIN 2008: 124-129 - [c26]Cecilia Sönströd, Ulf Johansson, Rikard König, Lars Niklasson:
Genetic Decision Lists for Concept Description. DMIN 2008: 450-456 - [c25]Ulf Johansson, Henrik Boström, Rikard König:
Extending Nearest Neighbor Classification with Spheres of Confidence. FLAIRS 2008: 282-287 - [c24]Rikard König, Ulf Johansson, Lars Niklasson:
Using Genetic Programming to Increase Rule Quality. FLAIRS 2008: 288-293 - [c23]Rikard König, Ulf Johansson, Lars Niklasson:
G-REX: A Versatile Framework for Evolutionary Data Mining. ICDM Workshops 2008: 971-974 - [c22]Tuve Löfström, Ulf Johansson, Henrik Boström:
On the Use of Accuracy and Diversity Measures for Evaluating and Selecting Ensembles of Classifiers. ICMLA 2008: 127-132 - [c21]Cecilia Sönströd, Ulf Johansson, Ulf Norinder, Henrik Boström:
Comprehensible Models for Predicting Molecular Interaction with Heart-Regulating Genes. ICMLA 2008: 559-564 - [c20]Ulf Johansson, Tuve Löfström, Henrik Boström:
The problem with ranking ensembles based on training or validation performance. IJCNN 2008: 3222-3228 - [c19]Ulf Johansson, Tuve Löfström, Lars Niklasson:
Evaluating Standard Techniques for Implicit Diversity. PAKDD 2008: 592-599 - [c18]Ulf Johansson, Cecilia Sönströd, Tuve Löfström, Henrik Boström:
Chipper - A Novel Algorithm for Concept Description. SCAI 2008: 133-140 - 2007
- [b1]Ulf Johansson:
Obtaining Accurate and Comprehensible Data Mining Models: An Evolutionary Approach. Linköping University, Sweden, 2007 - [c17]Rikard König, Ulf Johansson, Lars Niklasson:
Genetic programming - a tool for flexible rule extraction. IEEE Congress on Evolutionary Computation 2007: 1304-1310 - [c16]Cecilia Sönströd, Ulf Johansson, Rikard König:
Towards a Unified View on Concept Description. DMIN 2007: 59-65 - [c15]Rikard König, Ulf Johansson, Lars Niklasson:
Instance Ranking using Ensemble Spread. DMIN 2007: 73-78 - [c14]Tuve Löfström, Ulf Johansson, Lars Niklasson:
Empirically investigating the importance of diversity. FUSION 2007: 1-8 - [c13]Ulf Johansson, Tuve Löfström, Lars Niklasson:
The Importance of Diversity in Neural Network Ensembles - An Empirical Investigation. IJCNN 2007: 661-666 - [c12]Ulf Johansson, Rikard König, Lars Niklasson:
Inconsistency - Friend or Foe. IJCNN 2007: 1383-1388 - [c11]Cecilia Sönströd, Ulf Johansson:
Concept Description - A Fresh Look. IJCNN 2007: 2415-2420 - 2006
- [c10]Ulf Johansson, Tuve Löfström, Rikard König, Lars Niklasson:
Introducing GEMS - A Novel Technique for Ensemble Creation. FLAIRS 2006: 700-705 - [c9]Tuve Löfström, Rikard König, Ulf Johansson, Lars Niklasson, Mattias Strand, Tom Ziemke:
Benefits of relating the Retail Domain and Information Fusion. FUSION 2006: 1-4 - [c8]Ulf Johansson, Tuve Löfström, Rikard König, Lars Niklasson:
Genetically Evolved Trees Representing Ensembles. ICAISC 2006: 613-622 - [c7]Ulf Johansson, Tuve Löfström, Rikard König, Cecilia Sönströd, Lars Niklasson:
Rule Extraction from Opaque Models-- A Slightly Different Perspective. ICMLA 2006: 22-27 - [c6]Ulf Johansson, Cecilia Sönströd, Lars Niklasson:
Explaining Winning Poker--A Data Mining Approach. ICMLA 2006: 129-134 - [c5]Ulf Johansson, Tuve Löfström, Rikard König, Lars Niklasson:
Building Neural Network Ensembles using Genetic Programming. IJCNN 2006: 1260-1265 - 2005
- [c4]Ulf Johansson, Tuve Löfström, Lars Niklasson:
Obtaining Accurate Neural Network Ensembles. CIMCA/IAWTIC 2005: 103-108 - 2004
- [c3]Ulf Johansson, Rikard König, Lars Niklasson:
The Truth is In There - Rule Extraction from Opaque Models Using Genetic Programming. FLAIRS 2004: 658-663 - [c2]Ulf Johansson, Cecilia Sönströd, Lars Niklasson:
Why rule extraction matters. IASTED Conf. on Software Engineering and Applications 2004: 47-52 - [c1]Tuve Löfström, Ulf Johansson, Lars Niklasson:
Rule Extraction by Seeing Through the Model. ICONIP 2004: 555-560 - 2003
- [j1]Beverly A. Wagner, Ian Fillis, Ulf Johansson:
An empirical investigation into e-business adoption in the Scottish smaller firm. Int. J. Electron. Bus. 1(4): 408-422 (2003)
Coauthor Index
Tuve Löfström
aka: Tuwe Löfström
aka: Tuwe Löfström
[j11] [c96] [c95] [c94] [i5] [i4] [i2] [j10] [c91] [c89] [c85] [c84] [c82] [c80] [c78] [j7] [c77] [c76] [c74] [c72] [j6] [c71] [c70] [j5] [c68] [c67] [c66] [c65] [c64] [j4] [j3] [c53] [c52] [c51] [c50] [c49] [c47] [c46] [c45] [j2] [c43] [c41] [c40] [c39] [c38] [c36] [c35] [c33] [c31] [c29] [p1] [c28] [c22] [c20] [c19] [c18] [c14] [c13] [c10] [c9] [c8] [c7] [c5] [c4] [c1]