default search action
Imed Riadh Farah
Imed Riadh El Farah
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j50]Ali Ben Abbes, Noureddine Jarray, Imed Riadh Farah:
Advances in remote sensing based soil moisture retrieval: applications, techniques, scales and challenges for combining machine learning and physical models. Artif. Intell. Rev. 57(9): 224 (2024) - [j49]Aya Ferchichi, Ali Ben Abbes, Vincent Barra, Manel Rhif, Imed Riadh Farah:
Multi-attention Generative Adversarial Network for multi-step vegetation indices forecasting using multivariate time series. Eng. Appl. Artif. Intell. 128: 107563 (2024) - [j48]Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
Graph feature fusion driven by deep autoencoder for advanced hyperspectral image unmixing. Knowl. Based Syst. 299: 112087 (2024) - [j47]Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
Multi-view graph representation learning for hyperspectral image classification with spectral-spatial graph neural networks. Neural Comput. Appl. 36(7): 3737-3759 (2024) - [j46]Azza Abidi, Dino Ienco, Ali Ben Abbes, Imed Riadh Farah:
Orthrus: multi-scale land cover mapping from satellite image time series via 2D encoding and convolutional neural network. Neural Comput. Appl. 36(30): 19247-19265 (2024) - [j45]Hanen Balti, Ali Ben Abbes, Imed Riadh Farah:
A Bi-GRU-based encoder-decoder framework for multivariate time series forecasting. Soft Comput. 28(9-10): 6775-6786 (2024) - [c91]Raja Inoubli, Daniel Enrique Constantino-Recillas, Alejandro Monsiváis-Huertero, Lilia Bennaceur Farah, Imed Riadh Farah:
Computational methods to retrieve soil moisture using remote sensing data: A review. ATSIP 2024: 77-82 - [c90]Farah Chouikhi, Ali Ben Abbes, Imed Riadh Farah:
TALDS: A Transfer-Active Learning-Driven Siamese Network for Bi-temporal Image Classification. ATSIP 2024: 471-476 - [c89]Mariem Ayad, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
Geometric Deep Learning Techniques for Analyzing Brain 3D Meshes. ATSIP 2024: 477-482 - [c88]Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
Advanced graph deep learning for High-dimensional image analysis: challenges and opportunities. ATSIP 2024: 488-493 - [c87]Azza Abidi, Dino Ienco, Ali Ben Abbes, Imed Riadh Farah:
Multi-Scale Classification of Sentinel-2 Images for Land Cover Mapping Using Two-Branch Convolutional Neural Network. IGARSS 2024: 4109-4113 - [c86]Farah Chouikhi, Ali Ben Abbes, Imed Riadh Farah:
Monitoring Desertification in Tunisia Using Modis Ecological Indicators and Machine Learning. IGARSS 2024: 10006-10010 - [c85]Raja Inoubli, Daniel Enrique Constantino-Recillas, Alejandro Monsiváis-Huertero, Lilia Bennaceur Farah, Imed Riadh Farah:
Predicting C-band backscattering coefficient using the water cloud model and optical vegetation indices. IGARSS 2024: 10629-10633 - 2023
- [j44]Noureddine Jarray, Ali Ben Abbes, Imed Riadh Farah:
Machine learning for food security: current status, challenges, and future perspectives. Artif. Intell. Rev. 56(Supplement 3): 3853-3876 (2023) - [j43]Manel Rhif, Ali Ben Abbes, Beatriz Martínez, Imed Riadh Farah:
Veg-W2TCN: A parallel hybrid forecasting framework for non-stationary time series using wavelet and temporal convolution network model. Appl. Soft Comput. 137: 110172 (2023) - [j42]Manel Khazri Khlifi, Wadii Boulila, Imed Riadh Farah:
Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applications - A comprehensive review. Comput. Sci. Rev. 50: 100596 (2023) - [j41]Azza Abidi, Dino Ienco, Ali Ben Abbes, Imed Riadh Farah:
Combining 2D encoding and convolutional neural network to enhance land cover mapping from Satellite Image Time Series. Eng. Appl. Artif. Intell. 122: 106152 (2023) - [j40]Ali Ben Abbes, Raja Inoubli, Manel Rhif, Imed Riadh Farah:
Combining deep learning methods and multi-resolution analysis for drought forecasting modeling. Earth Sci. Informatics 16(2): 1811-1820 (2023) - [j39]Hanen Balti, Ali Ben Abbes, Yan-Fang Sang, Nedra Mellouli, Imed Riadh Farah:
Spatio-temporal heterogeneous graph using multivariate earth observation time series: Application for drought forecasting. Comput. Geosci. 179: 105435 (2023) - [j38]Abir Bousmina, Mouna Selmi, Mohamed Amine Ben Rhaiem, Imed Riadh Farah:
A Hybrid Approach Based on GAN and CNN-LSTM for Aerial Activity Recognition. Remote. Sens. 15(14): 3626 (2023) - [c84]Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
DNGAE: Deep Neighborhood Graph Autoencoder for Robust Blind Hyperspectral Unmixing. ICCCI 2023: 84-96 - [c83]Farah Chouikhi, Ali Ben Abbes, Imed Riadh Farah:
Desertification Detection in Satellite Images Using Siamese Variational Autoencoder with Transfer Learning. ICCCI 2023: 513-525 - [c82]Raja Inoubli, Daniel Enrique Constantino-Recillas, Alejandro Monsiváis-Huertero, Lilia Bennaceur Farah, Imed Riadh Farah:
Evaluation of Two Surface Scattering Models Within the Water Cloud Model Over an Agricultural Area in Mexico and Synergistic Use of Sentinel-1 and Sentinel-2 Images. IGARSS 2023: 3213-3216 - [c81]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah:
Modeling Complex Object Changes in Satellite Image Time-Series: Approach based on CSP and Spatiotemporal Graphs. KES 2023: 2467-2476 - [c80]Yosra Hajjaji, Ayyub Alzahem, Wadii Boulila, Imed Riadh Farah, Anis Koubaa:
Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil. KES 2023: 4952-4962 - [i5]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah:
Modeling Complex Object Changes in Satellite Image Time-Series: Approach based on CSP and Spatiotemporal Graph. CoRR abs/2305.15091 (2023) - [i4]Yosra Hajjaji, Ayyub Alzahem, Wadii Boulila, Imed Riadh Farah, Anis Koubaa:
Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil. CoRR abs/2306.16862 (2023) - 2022
- [j37]Aya Ferchichi, Ali Ben Abbes, Vincent Barra, Imed Riadh Farah:
Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecol. Informatics 68: 101552 (2022) - [j36]Manel Rhif, Ali Ben Abbes, Beatriz Martínez, Rogier de Jong, Yan-Fang Sang, Imed Riadh Farah:
Detection of trend and seasonal changes in non-stationary remote sensing data: Case study of Tunisia vegetation dynamics. Ecol. Informatics 69: 101596 (2022) - [j35]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah, Aurélie Leborgne, Pierre Gançarski:
Resolution methods for constraint satisfaction problem in remote sensing field: A survey of static and dynamic algorithms. Ecol. Informatics 69: 101607 (2022) - [j34]Noureddine Jarray, Ali Ben Abbes, Manel Rhif, Hanen Dhaou, Mohamed Ouessar, Imed Riadh Farah:
SMETool: A web-based tool for soil moisture estimation based on Eo-Learn framework and Machine Learning methods. Environ. Model. Softw. 157: 105505 (2022) - [j33]Manel Chehibi, Ahlem Ferchichi, Imed Riadh Farah:
Representing and modeling spatio-temporal uncertainty using belief function theory in flood extent mapping. Expert Syst. Appl. 209: 118212 (2022) - [j32]Hanen Balti, Ali Ben Abbes, Nedra Mellouli, Imed Riadh Farah, Yan-Fang Sang, Myriam Lamolle:
Multidimensional architecture using a massive and heterogeneous data: Application to drought monitoring. Future Gener. Comput. Syst. 136: 1-14 (2022) - [j31]Noureddine Jarray, Ali Ben Abbes, Imed Riadh Farah:
A Novel Teacher-Student Framework for Soil Moisture Retrieval by Combining Sentinel-1 and Sentinel-2: Application in Arid Regions. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022) - [j30]Slim Namouchi, Imed Riadh Farah:
Graph-Based Classification and Urban Modeling of Laser Scanning and Imagery: Toward 3D Smart Web Services. Remote. Sens. 14(1): 114 (2022) - [j29]Wadii Boulila, Manel Khazri Khlifi, Adel Ammar, Anis Koubaa, Bilel Benjdira, Imed Riadh Farah:
A Hybrid Privacy-Preserving Deep Learning Approach for Object Classification in Very High-Resolution Satellite Images. Remote. Sens. 14(18): 4631 (2022) - [c79]Mariem Ayed, Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
A deep learning approach based on morphological profiles for Hyperspectral Image unmixing. ATSIP 2022: 1-6 - [c78]Ikram Chourib, Gwenaël Guillard, Imed Riadh Farah, Basel Solaiman:
Structured Case Base Knowledge using Unsupervised Learning. ATSIP 2022: 1-6 - [c77]Imen Gatfaoui, Basel Solaiman, Imed Riadh Farah:
Model Based Anomaly Detection in High Dimensional DATA. ATSIP 2022: 1-6 - [c76]Mohamed Sahbi Landolsi, Yemna Sayeb, Wajih Krimi, Imed Riadh El Farah:
Improving Smart City Frameworks based on Enterprise Architecture with territorial governance to manage covid -19 crisis. ATSIP 2022: 1-6 - [c75]Wissal Ben Marzouka, Basel Solaiman, Mohamed Farah, Imed Riadh Farah:
Hypothetical reasoning method based on hypothetical cases. ATSIP 2022: 1-6 - [c74]Manel Chehibi, Ahlem Ferchichi, Imed Riadh Farah:
An Intelligent System for Managing Uncertain Temporal Flood Events. BELIEF 2022: 184-193 - [c73]Nedra Mellouli, Mohamed Louay Rabah, Imed Riadh Farah:
Transformers-based time series forecasting for piezometric level prediction. EAIS 2022: 1-6 - [c72]Mohamed Louay Rabah, Nedra Mellouli, Imed Riadh Farah:
Modèle de prédiction de niveau piézométrique basé sur Transformers. EGC 2022: 305-312 - [c71]Oumayma Bounouh, Ana Maria Tarquis, Imed Riadh Farah:
Novel Method for Combining NDVI Time Series Forecasting Models. IGARSS 2022: 2355-2357 - [c70]Farah Chouikhi, Manel Rhif, Ali Ben Abbes, Imed Riadh Farah:
Desertification Detection Based on Landsat Time-Series Images and Variational Auto-Encoder: Application in Jeffera, Tunisia. IGARSS 2022: 3688-3691 - [c69]Hanen Balti, Manel Rhif, Farah Chouikhi, Raja Inoubli, Azza Abidi, Noureddine Jarray, Ali Ben Abbes, Imed Riadh Farah:
SmartEarthTunisia: A Benchmark for Monitoring the SDGs USING Earth Observation Data and Deep Learning Techniques In Tunisia. IGARSS 2022: 7803-7806 - [c68]Noureddine Jarray, Ali Ben Abbes, Imed Riadh Farah:
A Machine Learning Framework for Cereal Yield Forecasting Using Heterogeneous Data. ISDA (2) 2022: 21-30 - [c67]Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah:
Leveraging Artificial Intelligence Techniques for Smart Palm Tree Detection: A Decade Systematic Review. KES 2022: 2823-2832 - [c66]Refka Hanachi, Akrem Sellami, Imed Riadh Farah, Mauro Dalla Mura:
Multi Spectral-Spatial Gabor Feature Fusion Based On End-To-End Deep Learning For Hyperspectral Image Classification. WHISPERS 2022: 1-6 - [i3]Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah:
Leveraging Artificial Intelligence Techniques for Smart Palm Tree Detection: A Decade Systematic Review. CoRR abs/2209.05282 (2022) - 2021
- [j28]Imen Chebbi, Nedra Mellouli, Imed Riadh Farah, Myriam Lamolle:
Big Remote Sensing Image Classification Based on Deep Learning Extraction Features and Distributed Spark Frameworks. Big Data Cogn. Comput. 5(2): 21 (2021) - [j27]Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah, Imed Romdhani, Amir Hussain:
Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 39: 100318 (2021) - [j26]Bouthayna Msellmi, Daniele Picone, Zouhaier Ben Rabah, Mauro Dalla Mura, Imed Riadh Farah:
Sub-Pixel Mapping Model Based on Total Variation Regularization and Learned Spatial Dictionary. Remote. Sens. 13(2): 190 (2021) - [c65]Refka Hanachi, Akrem Sellami, Imed Riadh Farah:
BS-GAENets: Brain-Spatial Feature Learning Via a Graph Deep Autoencoder for Multi-modal Neuroimaging Analysis. VISIGRAPP (Revised Selected Papers) 2021: 303-327 - [c64]Manel Rhif, Ali Ben Abbes, Beatriz Martínez, Imed Riadh Farah:
An Improved Forecasting Model from Satellite Imagery Based on Optimum Wavelet Bases and Adam Optimized LSTM Methods. ICCCI 2021: 560-571 - [c63]Noureddine Jarray, Ali Ben Abbes, Imed Riadh Farah:
An Evaluation of Soil Moisture Retrieval Using Machine Learning Methods: Application in Arid Regions of Tunisia. IGARSS 2021: 6331-6334 - [c62]Hanen Balti, Nedra Mellouli, Ali Ben Abbes, Imed Riadh Farah, Yangfan Sang, Myriam Lamolle:
Enhancing Big Data Warehousing and Analytics for Spatio-Temporal Massive Data. ISD 2021 - [c61]Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah:
An improved tile-based scalable distributed management model of massive high-resolution satellite images. KES 2021: 2931-2942 - [c60]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah:
A Hybrid APM-CPGSO Approach for Constraint Satisfaction Problem Solving: Application to Remote Sensing. KES 2021: 3403-3412 - [c59]Refka Hanachi, Akrem Sellami, Imed Riadh Farah:
Interpretation of Human Behavior from Multi-modal Brain MRI Images based on Graph Deep Neural Networks and Attention Mechanism. VISIGRAPP (4: VISAPP) 2021: 56-66 - [i2]Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah:
An improved tile-based scalable distributed management model of massive high-resolution satellite images. CoRR abs/2105.04731 (2021) - [i1]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah:
A Hybrid APM-CPGSO Approach for Constraint Satisfaction Problem Solving: Application to Remote Sensing. CoRR abs/2106.05193 (2021) - 2020
- [j25]Hanen Balti, Ali Ben Abbes, Nedra Mellouli, Imed Riadh Farah, Yan-Fang Sang, Myriam Lamolle:
A review of drought monitoring with big data: Issues, methods, challenges and research directions. Ecol. Informatics 60: 101136 (2020) - [j24]Akrem Sellami, Ali Ben Abbes, Vincent Barra, Imed Riadh Farah:
Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification. Pattern Recognit. Lett. 138: 594-600 (2020) - [c58]Marwen Bouabid, Mohamed Farah, Imed Riadh Farah:
Suspicious Local Event Detection in Social Media and Remote Sensing: Towards a Geosocial Dataset Construction. ATSIP 2020: 1-6 - [c57]Ikram Chourib, Gwenaël Guillard, Makram Mestiri, Basel Solaiman, Imed Riadh Farah:
Case-Based Reasoning: Problems And Importance Of Similarity Measure. ATSIP 2020: 1-6 - [c56]Raja Inoubli, Ali Ben Abbes, Imed Riadh Farah, Vijay Singh, Tsegaye Tadesse, Mohammad Taghi Sattari:
A review of drought monitoring using remote sensing and data mining methods. ATSIP 2020: 1-6 - [c55]Salim Klibi, Kais Tounsi, Zouhaier Ben Rabah, Basel Solaiman, Imed Riadh Farah:
Soil salinity prediction using a machine learning approach through hyperspectral satellite image. ATSIP 2020: 1-6 - [c54]Bouthayna Msellmi, Daniele Picone, Zouhaier Ben Rabah, Mauro Dalla Mura, Imed Riadh Farah:
Sub-pixel Mapping Method based on Total Variation Minimization and Spectral Dictionary. ATSIP 2020: 1-7 - [c53]Bouthayna Msellmi, Daniele Picone, Zouhaier Ben Rabah, Mauro Dalla Mura, Imed Riadh Farah:
Sub-Pixel Mapping Method Based on K-SVD Dictionary Learning and Total Variation Minimization. IGARSS 2020: 2823-2826
2010 – 2019
- 2019
- [j23]Akrem Sellami, Mohamed Farah, Imed Riadh Farah, Basel Solaiman:
Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection. Expert Syst. Appl. 129: 246-259 (2019) - [j22]Ali Ben Abbes, Mohamed Farah, Imed Riadh Farah, Vincent Barra:
A non-stationary NDVI time series modelling using triplet Markov chain. Int. J. Inf. Decis. Sci. 11(2): 163-179 (2019) - [j21]Wassim Messaoudi, Mohamed Farah, Imed Riadh Farah:
Fuzzy Spatio-Spectro-Temporal Ontology for Remote Sensing Image Annotation and Interpretation: Application to Natural Risks Assessment. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 27(5): 815-840 (2019) - [j20]Yaakoub Boualleg, Mohamed Farah, Imed Riadh Farah:
Remote Sensing Scene Classification Using Convolutional Features and Deep Forest Classifier. IEEE Geosci. Remote. Sens. Lett. 16(12): 1944-1948 (2019) - [j19]Fethi Ghazouani, Imed Riadh Farah, Basel Solaiman:
A Multi-Level Semantic Scene Interpretation Strategy for Change Interpretation in Remote Sensing Imagery. IEEE Trans. Geosci. Remote. Sens. 57(11): 8775-8795 (2019) - [c52]Imen Chebbi, Nedra Mellouli, Myriam Lamolle, Imed Riadh Farah:
Deep Learning Analysis for Big Remote Sensing Image Classification. KDIR 2019: 355-362 - [c51]Hanen Balti, Nedra Mellouli, Imen Chebbi, Imed Riadh Farah, Myriam Lamolle:
Deep Semantic Feature Detection from Multispectral Satellite Images. KDIR 2019: 458-466 - [c50]Bouthayna Msellmi, Daniele Picone, Mauro Dalla Mura, Zouhaier Ben Rabah, Imed Riadh Farah:
Isotropic Total Variation Minimization for Sub-Pixel Mapping. IGARSS 2019: 3325-3328 - [c49]Slim Namouchi, Bruno Vallet, Imed Riadh Farah, Haythem Ismail:
Piecewise Horizontal 3D Roof Reconstruction from Aerial Lidar. IGARSS 2019: 8992-8995 - 2018
- [j18]Ahlem Ferchichi, Wadii Boulila, Imed Riadh Farah:
Corrigendum to "Propagating aleatory and epistemic uncertainty in land cover change prediction process" [Ecol. Inform. 37, 24-37]. Ecol. Informatics 43: 231 (2018) - [j17]Wadii Boulila, Imed Riadh Farah, Amir Hussain:
A novel decision support system for the interpretation of remote sensing big data. Earth Sci. Informatics 11(1): 31-45 (2018) - [j16]Ahlem Ferchichi, Wadii Boulila, Imed Riadh Farah:
Reducing uncertainties in land cover change models using sensitivity analysis. Knowl. Inf. Syst. 55(3): 719-740 (2018) - [j15]Ines Ben Slimene Ben Amor, Nesrine Chehata, Jean-Stéphane Bailly, Imed Riadh Farah, Philippe Lagacherie:
Parcel-Based Active Learning for Large Extent Cultivated Area Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 11(1): 79-88 (2018) - [j14]Akrem Sellami, Mohamed Farah, Imed Riadh Farah, Basel Solaiman:
Hyperspectral Imagery Semantic Interpretation Based on Adaptive Constrained Band Selection and Knowledge Extraction Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 11(4): 1337-1347 (2018) - [c48]Imen Chebbi, Wadii Boulila, Nedra Mellouli, Myriam Lamolle, Imed Riadh Farah:
A comparison of big remote sensing data processing with Hadoop MapReduce and Spark. ATSIP 2018: 1-4 - [c47]Fethi Ghazouani, Imed Riadh Farah, Basel Solaiman:
Qualitative semantic spatio-temporal reasoning based on description logics for modeling dynamics of spatio-temporal objects in satellite images. ATSIP 2018: 1-6 - [c46]Yosra Hajjaji, Imed Riadh Farah:
Performance investigation of selected NoSQL databases for massive remote sensing image data storage. ATSIP 2018: 1-6 - [c45]Rawaa Hamdi, Akrem Sellami, Imed Riadh Farah:
An adaptive semantic dimensionality reduction approach for hyperspectral imagery classification. ATSIP 2018: 1-6 - [c44]Manel Rhif, Hazem Wannous, Imed Riadh Farah:
Action Recognition from 3D Skeleton Sequences using Deep Networks on Lie Group Features. ICPR 2018: 3427-3432 - [c43]Bouthayna Msellmi, Zouhaier Ben Rabah, Imed Riadh Farah:
A GRAPH BASED MODEL FOR SUB-PIXEL OBJECTS RECOGNITION. IGARSS 2018: 7070-7073 - [c42]Khadhar Meriem, Mestiri Makram, Imed Riadh Farah:
Designing Human Brain Interface Model for Interactive Cognitive Learning in an Immersive System with Neurofeedback. IEEE Conf. on Intelligent Systems 2018: 645-651 - [c41]Khadhar Meriem, Mestiri Makram, Imed Riadh Farah:
Virtual and Augmented Reality in the Valuation of the Tunisian Cultural Heritage: Application to Thysdrus (ElJem) Amphitheater. IEEE Conf. on Intelligent Systems 2018: 652-654 - 2017
- [j13]Ahlem Ferchichi, Wadii Boulila, Imed Riadh Farah:
Propagating aleatory and epistemic uncertainty in land cover change prediction process. Ecol. Informatics 37: 24-37 (2017) - [j12]Wadii Boulila, Zouhayra Ayadi, Imed Riadh Farah:
Sensitivity analysis approach to model epistemic and aleatory imperfection: Application to Land Cover Change prediction model. J. Comput. Sci. 23: 58-70 (2017) - [j11]Ahlem Ferchichi, Wadii Boulila, Imed Riadh Farah:
Towards an uncertainty reduction framework for land-cover change prediction using possibility theory. Vietnam. J. Comput. Sci. 4(3): 195-209 (2017) - [c40]Khitem Amiri, Mohamed Farah, Imed Riadh Farah:
Fuzzy hypergraph of concepts for semantic annotation of remotely sensed images. ATSIP 2017: 1-8 - [c39]Malek Boujebli, Hassen Drira, Makram Mestiri, Imed Riadh Farah:
Rate invariant action recognition in Lie algebra. ATSIP 2017: 1-7 - [c38]Oumayma Bounouh, Houcine Essid, Imed Riadh Farah:
Prediction of land use/land cover change methods: A study. ATSIP 2017: 1-7 - 2016
- [j10]Mohamed Farah, Hafed Nefzi, Imed Riadh Farah:
A similarity-based framework for the alignment of an ontology for remote sensing. Comput. Geosci. 96: 202-207 (2016) - [c37]Imen Chebbi, Wadii Boulila, Imed Riadh Farah:
Improvement of satellite image classification: Approach based on Hadoop/MapReduce. ATSIP 2016: 31-34 - [c36]Zouhaier Ben Rabah, Imed Riadh Farah:
Evaluation and predictability of water erosion based on spectral information analysis. ATSIP 2016: 533-536 - [c35]Fethi Ghazouani, Wassim Messaoudi, Imed Riadh Farah:
Towards an ontological conceptualization for understanding the dynamics of spatio-temporal objects. ATSIP 2016: 543-548 - [c34]Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah:
Sensitivity analysis of land cover change prediction model in the presence of aleatory and epistemic imperfection. ATSIP 2016: 549-554 - [c33]Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur, Imed Riadh Farah:
On the effects of vegetation on radar backscattering. ATSIP 2016: 561-566 - [c32]Mohamed Farah, Khitem Amiri, Imed Riadh Farah:
Graph of visual words for semantic annotation of remote sensing images. ATSIP 2016: 606-612 - [c31]Bouthayna Msellmi, Zouhaier Ben Rabah, Imed Riadh Farah:
Super-resolution algorithm based on sub-pixels spatial Correlation for hyperspectral image classification. ATSIP 2016: 613-615 - 2015
- [c30]Fethi Ghazouani, Wassim Messaoudi, Imed Riadh Farah:
A Multi-level Ontological Approach for Change Monitoring in Remotely Sensed Imagery. KEOD 2015: 435-440 - [c29]