default search action
Victor Picheny
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j19]Youssef Diouane, Victor Picheny, Rodolphe Le Riche, Alexandre Scotto Di Perrotolo:
TREGO: a trust-region framework for efficient global optimization. J. Glob. Optim. 86(1): 1-23 (2023) - [c10]Henry B. Moss, Sebastian W. Ober, Victor Picheny:
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation. AISTATS 2023: 5213-5230 - [c9]Louis C. Tiao, Vincent Dutordoir, Victor Picheny:
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes. ICML 2023: 34143-34160 - [p1]Mickaël Binois, Abderrahmane Habbal, Victor Picheny:
A Game Theoretic Perspective on Bayesian Many-Objective Optimization. Many-Criteria Optimization and Decision Analysis 2023: 299-316 - [i17]Henry B. Moss, Sebastian W. Ober, Victor Picheny:
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation. CoRR abs/2301.10123 (2023) - [i16]Victor Picheny, Joel Berkeley, Henry B. Moss, Hrvoje Stojic, Uri Granta, Sebastian W. Ober, Artem Artemev, Khurram Ghani, Alexander Goodall, Andrei Paleyes, Sattar Vakili, Sergio Pascual-Diaz, Stratis Markou, Jixiang Qing, Nasrulloh R. B. S. Loka, Ivo Couckuyt:
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow. CoRR abs/2302.08436 (2023) - [i15]Louis C. Tiao, Vincent Dutordoir, Victor Picheny:
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes. CoRR abs/2304.14034 (2023) - 2022
- [c8]Victor Picheny, Henry B. Moss, Léeonard Torossian, Nicolas Durrande:
Bayesian quantile and expectile optimisation. UAI 2022: 1623-1633 - [i14]Henry B. Moss, Sebastian W. Ober, Victor Picheny:
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation. CoRR abs/2206.02437 (2022) - [i13]Andrei Paleyes, Henry B. Moss, Victor Picheny, Piotr Zulawski, Felix Newman:
A penalisation method for batch multi-objective Bayesian optimisation with application in heat exchanger design. CoRR abs/2206.13326 (2022) - [i12]Paul E. Chang, Prakhar Verma, S. T. John, Victor Picheny, Henry B. Moss, Arno Solin:
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning. CoRR abs/2211.01053 (2022) - 2021
- [c7]Sattar Vakili, Kia Khezeli, Victor Picheny:
On Information Gain and Regret Bounds in Gaussian Process Bandits. AISTATS 2021: 82-90 - [c6]Sattar Vakili, Henry B. Moss, Artem Artemev, Vincent Dutordoir, Victor Picheny:
Scalable Thompson Sampling using Sparse Gaussian Process Models. NeurIPS 2021: 5631-5643 - 2020
- [j18]David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit Enaux, Vincent Herbert:
Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions. Ann. Math. Artif. Intell. 88(1-3): 187-212 (2020) - [j17]François Bachoc, Céline Helbert, Victor Picheny:
Gaussian process optimization with failures: classification and convergence proof. J. Glob. Optim. 78(3): 483-506 (2020) - [j16]Mickaël Binois, Victor Picheny, Patrick Taillandier, Abderrahmane Habbal:
The Kalai-Smorodinsky solution for many-objective Bayesian optimization. J. Mach. Learn. Res. 21: 150:1-150:42 (2020) - [j15]Léonard Torossian, Victor Picheny, Robert Faivre, Aurélien Garivier:
A review on quantile regression for stochastic computer experiments. Reliab. Eng. Syst. Saf. 201: 106858 (2020) - [c5]Victor Picheny, Vincent Dutordoir, Artem Artemev, Nicolas Durrande:
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation. ECML/PKDD (3) 2020: 431-446 - [i11]Léonard Torossian, Victor Picheny, Nicolas Durrande:
Bayesian Quantile and Expectile Optimisation. CoRR abs/2001.04833 (2020) - [i10]Sattar Vakili, Victor Picheny, Nicolas Durrande:
Regret Bounds for Noise-Free Bayesian Optimization. CoRR abs/2002.05096 (2020) - [i9]Sattar Vakili, Victor Picheny, Artem Artemev:
Scalable Thompson Sampling using Sparse Gaussian Process Models. CoRR abs/2006.05356 (2020) - [i8]Victor Picheny, Vincent Dutordoir, Artem Artemev, Nicolas Durrande:
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation. CoRR abs/2006.14376 (2020) - [i7]Sattar Vakili, Kia Khezeli, Victor Picheny:
On Information Gain and Regret Bounds in Gaussian Process Bandits. CoRR abs/2009.06966 (2020)
2010 – 2019
- 2019
- [j14]Victor Picheny, Mickaël Binois, Abderrahmane Habbal:
A Bayesian optimization approach to find Nash equilibria. J. Glob. Optim. 73(1): 171-192 (2019) - [j13]Victor Picheny, Rémi Servien, Nathalie Villa-Vialaneix:
Interpretable sparse SIR for functional data. Stat. Comput. 29(2): 255-267 (2019) - [c4]Léonard Torossian, Aurélien Garivier, Victor Picheny:
$\mathcal{X}$-Armed Bandits: Optimizing Quantiles, CVaR and Other Risks. ACML 2019: 252-267 - [i6]Léonard Torossian, Victor Picheny, Robert Faivre, Aurélien Garivier:
A Review on Quantile Regression for Stochastic Computer Experiments. CoRR abs/1901.07874 (2019) - [i5]Léonard Torossian, Aurélien Garivier, Victor Picheny:
X-Armed Bandits: Optimizing Quantiles and Other Risks. CoRR abs/1904.08205 (2019) - [i4]David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit Enaux, Vincent Herbert:
Modeling and Optimization with Gaussian Processes in Reduced Eigenbases - Extended Version. CoRR abs/1908.11272 (2019) - [i3]Victor Picheny, Sattar Vakili, Artem Artemev:
Ordinal Bayesian Optimisation. CoRR abs/1912.02493 (2019) - 2018
- [j12]Magali Champion, Victor Picheny, Matthieu Vignes:
Inferring large graphs using ℓ1 -penalized likelihood. Stat. Comput. 28(4): 905-921 (2018) - [j11]Magali Champion, Victor Picheny, Matthieu Vignes:
Correction to: Inferring large graphs using ℓ1-penalized likelihood. Stat. Comput. 28(6): 1231 (2018) - [c3]David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit Enaux, Vincent Herbert:
Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization Under a Restricted Budget. LION 2018: 175-179 - [i2]David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit Enaux, Vincent Herbert:
Budgeted Multi-Objective Optimization with a Focus on the Central Part of the Pareto Front - Extended Version. CoRR abs/1809.10482 (2018) - [i1]David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit Enaux, Vincent Herbert:
Targeting Solutions in Bayesian Multi-Objective Optimization: Sequential and Parallel Versions. CoRR abs/1811.03862 (2018) - 2017
- [j10]Hamed Jalali, Inneke Van Nieuwenhuyse, Victor Picheny:
Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res. 261(1): 279-301 (2017) - 2016
- [j9]Victor Picheny, David Ginsbourger, Tipaluck Krityakierne:
Comment: Some Enhancements Over the Augmented Lagrangian Approach. Technometrics 58(1): 17-21 (2016) - [c2]Victor Picheny, Robert B. Gramacy, Stefan M. Wild, Sébastien Le Digabel:
Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian. NIPS 2016: 1435-1443 - 2015
- [j8]Victor Picheny:
Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction. Stat. Comput. 25(6): 1265-1280 (2015) - 2014
- [j7]Clément Chevalier, Victor Picheny, David Ginsbourger:
KrigInv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging. Comput. Stat. Data Anal. 71: 1021-1034 (2014) - [j6]Victor Picheny, David Ginsbourger:
Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package. Comput. Stat. Data Anal. 71: 1035-1053 (2014) - [j5]Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vázquez, Victor Picheny, Yann Richet:
Fast Parallel Kriging-Based Stepwise Uncertainty Reduction With Application to the Identification of an Excursion Set. Technometrics 56(4): 455-465 (2014) - [c1]Victor Picheny:
A Stepwise uncertainty reduction approach to constrained global optimization. AISTATS 2014: 787-795 - 2013
- [j4]Victor Picheny, David Ginsbourger:
A Nonstationary Space-Time Gaussian Process Model for Partially Converged Simulations. SIAM/ASA J. Uncertain. Quantification 1(1): 57-78 (2013) - [j3]Victor Picheny, David Ginsbourger, Yann Richet, Gregory Caplin:
Quantile-Based Optimization of Noisy Computer Experiments With Tunable Precision. Technometrics 55(1): 2-13 (2013) - [j2]Victor Picheny, David Ginsbourger, Yann Richet, Gregory Caplin:
Rejoinder. Technometrics 55(1): 31-36 (2013) - 2012
- [j1]Julien Bect, David Ginsbourger, Ling Li, Victor Picheny, Emmanuel Vázquez:
Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput. 22(3): 773-793 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 01:40 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint