default search action
Carlos Soares
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j41]Joel Ribeiro, Tânia Fontes, Carlos Soares, José Luís Borges:
Multidimensional subgroup discovery on event logs. Expert Syst. Appl. 246: 123205 (2024) - [j40]Hajar Baghcheband, Carlos Soares, Luís Paulo Reis:
Machine Learning Data Market Based on Multiagent Systems. IEEE Internet Comput. 28(4): 7-13 (2024) - [j39]Vítor Cerqueira, Nuno Moniz, Carlos Soares:
VEST: automatic feature engineering for forecasting. Mach. Learn. 113(7): 4523-4545 (2024) - [j38]Yassine Baghoussi, Carlos Soares, João Mendes-Moreira:
Corrector LSTM: built-in training data correction for improved time-series forecasting. Neural Comput. Appl. 36(26): 16213-16231 (2024) - [j37]Carlos Soares, Stephan G. Grimmelikhuijsen, Albert Meijer:
Screen-level bureaucrats in the age of algorithms: An ethnographic study of algorithmically supported public service workers in the Netherlands Police. Inf. Polity 29(3): 277-292 (2024) - [c135]Moisés Santos, André C. P. L. F. de Carvalho, Carlos Soares:
Enhancing Algorithm Performance Understanding through tsMorph: Generating Semi-Synthetic Time Series for Robust Forecasting Evaluation. AEQUITAS@ECAI 2024 - [c134]Inês Oliveira e Silva, Sérgio M. Jesus, Hugo M. Ferreira, Pedro Saleiro, Inês Sousa, Pedro Bizarro, Carlos Soares:
Fair-OBNC: Correcting Label Noise for Fairer Datasets. ECAI 2024: 1003-1010 - [c133]Ricardo Urjais Gomes, Carlos Soares, Luís Paulo Reis:
An Empirical Evaluation of DeepAR for Univariate Time Series Forecasting. EPIA (3) 2024: 188-199 - [c132]Cátia Teixeira, Inês Gomes, Luís Cunha, Carlos Soares, Jan N. van Rijn:
GASTeNv2: Generative Adversarial Stress Testing Networks with Gaussian Loss. EPIA (2) 2024: 261-272 - [c131]José Leites, Vítor Cerqueira, Carlos Soares:
Lag Selection for Univariate Time Series Forecasting Using Deep Learning: An Empirical Study. EPIA (3) 2024: 321-332 - [c130]Vítor Cerqueira, Nuno Moniz, Ricardo Inácio, Carlos Soares:
Time Series Data Augmentation as an Imbalanced Learning Problem. EPIA (2) 2024: 335-346 - [c129]Inês Oliveira e Silva, Carlos Soares, Vítor Cerqueira, Arlete Rodrigues, Pedro Bastardo:
Meta-TadGAN: Time Series Anomaly Detection Using TadGAN with Meta-features. EPIA (3) 2024: 347-358 - [c128]Rodrigo Tuna, Yassine Baghoussi, Carlos Soares, João Mendes-Moreira:
Kernel Corrector LSTM. IDA (2) 2024: 3-14 - [c127]Hajar Baghcheband, Carlos Soares, Luís Paulo Reis:
Shapley-Based Data Valuation Method for the Machine Learning Data Markets (MLDM). ISMIS 2024: 170-177 - [c126]Luis Roque, Carlos Soares, Luís Torgo:
RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms. KDD 2024: 2491-2499 - [c125]Lucas Martins, João Bravo, Ana Sofia Gomes, Carlos Soares, Pedro Bizarro:
RIFF: Inducing Rules for Fraud Detection from Decision Trees. RuleML+RR 2024: 50-58 - [c124]Thales R. S. Lopes, Guilherme Freire Roberto, Carlos Soares, Thaína A. A. Tosta, Adriano Barbosa-Silva, Adriano M. Loyola, Sérgio V. Cardoso, Paulo Rogério de Faria, Marcelo Zanchetta do Nascimento, Leandro Alves Neves:
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images. VISIGRAPP (2): VISAPP 2024: 441-447 - [i40]Vítor Cerqueira, Moisés Rocha dos Santos, Yassine Baghoussi, Carlos Soares:
On-the-fly Data Augmentation for Forecasting with Deep Learning. CoRR abs/2404.16918 (2024) - [i39]Rodrigo Tuna, Yassine Baghoussi, Carlos Soares, João Mendes-Moreira:
Kernel Corrector LSTM. CoRR abs/2404.18273 (2024) - [i38]Vítor Cerqueira, Nuno Moniz, Ricardo Inácio, Carlos Soares:
Time Series Data Augmentation as an Imbalanced Learning Problem. CoRR abs/2404.18537 (2024) - [i37]José Leites, Vítor Cerqueira, Carlos Soares:
Lag Selection for Univariate Time Series Forecasting using Deep Learning: An Empirical Study. CoRR abs/2405.11237 (2024) - [i36]Vítor Cerqueira, Luis Roque, Carlos Soares:
Forecasting with Deep Learning: Beyond Average of Average of Average Performance. CoRR abs/2406.16590 (2024) - [i35]Ricardo Inácio, Vítor Cerqueira, Marília Barandas, Carlos Soares:
Meta-learning and Data Augmentation for Stress Testing Forecasting Models. CoRR abs/2406.17008 (2024) - [i34]Luis Roque, Carlos Soares, Luís Torgo:
RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms. CoRR abs/2408.03399 (2024) - [i33]Inês Gomes, Luís F. Teixeira, Jan N. van Rijn, Carlos Soares, André Restivo, Luís Cunha, Moisés Santos:
Finding Patterns in Ambiguity: Interpretable Stress Testing in the Decision Boundary. CoRR abs/2408.06302 (2024) - [i32]João Lucas Martins, João Bravo, Ana Sofia Gomes, Carlos Soares, Pedro Bizarro:
RIFF: Inducing Rules for Fraud Detection from Decision Trees. CoRR abs/2408.12989 (2024) - [i31]Inês Oliveira e Silva, Sérgio M. Jesus, Hugo M. Ferreira, Pedro Saleiro, Inês Sousa, Pedro Bizarro, Carlos Soares:
Fair-OBNC: Correcting Label Noise for Fairer Datasets. CoRR abs/2410.06214 (2024) - 2023
- [j36]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Early anomaly detection in time series: a hierarchical approach for predicting critical health episodes. Mach. Learn. 112(11): 4409-4430 (2023) - [j35]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Model Selection for Time Series Forecasting An Empirical Analysis of Multiple Estimators. Neural Process. Lett. 55(7): 10073-10091 (2023) - [c123]Pedro Strecht, João Mendes-Moreira, Carlos Soares:
Symbolic Data Analysis to Improve Completeness of Model Combination Methods. AI (2) 2023: 107-119 - [c122]Inês Oliveira e Silva, Carlos Soares, Inês Sousa, Rayid Ghani:
Systematic Analysis of the Impact of Label Noise Correction on ML Fairness. AI (2) 2023: 173-184 - [c121]Guilherme Freire Roberto, Danilo Cesar Pereira, Alessandro Santana Martins, Thaína A. A. Tosta, Carlos Soares, Alessandra Lumini, Guilherme Botazzo Rozendo, Leandro Alves Neves, Marcelo Zanchetta do Nascimento:
Detection of Covid-19 in Chest X-Ray Images Using Percolation Features and Hermite Polynomial Classification. CIARP 2023: 163-177 - [c120]Fernando Freitas, Pavel Brazdil, Carlos Soares:
Exploring the Reduction of Configuration Spaces of Workflows. DS 2023: 33-47 - [c119]Hajar Baghcheband, Carlos Soares, Luís Paulo Reis:
Machine Learning Data Markets: Evaluating the Impact of Data Exchange on the Agent Learning Performance. EPIA (1) 2023: 337-348 - [c118]Luís Cunha, Carlos Soares, André Restivo, Luís F. Teixeira:
GASTeN: Generative Adversarial Stress Test Networks. IDA 2023: 91-102 - [i30]Inês Oliveira e Silva, Carlos Soares, Inês Sousa, Rayid Ghani:
Systematic analysis of the impact of label noise correction on ML Fairness. CoRR abs/2306.15994 (2023) - [i29]Moisés Rocha dos Santos, André C. P. L. F. de Carvalho, Carlos Soares:
tsMorph: generation of semi-synthetic time series to understand algorithm performance. CoRR abs/2312.01344 (2023) - 2022
- [j34]Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, João A. M. Santos:
On the joint-effect of class imbalance and overlap: a critical review. Artif. Intell. Rev. 55(8): 6207-6275 (2022) - [j33]Vítor Cerqueira, Luís Torgo, Carlos Soares:
A case study comparing machine learning with statistical methods for time series forecasting: size matters. J. Intell. Inf. Syst. 59(2): 415-433 (2022) - [j32]Adriano Rivolli, Luís Paulo F. Garcia, Carlos Soares, Joaquin Vanschoren, André C. P. L. F. de Carvalho:
Meta-features for meta-learning. Knowl. Based Syst. 240: 108101 (2022) - [c117]Pedro Strecht, João Mendes-Moreira, Carlos Soares:
Density Estimation in High-Dimensional Spaces: A Multivariate Histogram Approach. ADMA (2) 2022: 266-278 - [c116]Dusan Hetlerovic, Lubos Popelínský, Pavel Bradi, Carlos Soares, Fernando Freitas:
On Usefulness of Outlier Elimination in Classification Tasks: Extended Abstract. Meta-Knowledge Transfer @ ECML/PKDD 2022: 78-80 - [c115]Dusan Hetlerovic, Lubos Popelínský, Pavel Brazdil, Carlos Soares, Fernando Freitas:
On Usefulness of Outlier Elimination in Classification Tasks. IDA 2022: 143-156 - [c114]Hajar Baghcheband, Carlos Soares, Luís Paulo Reis:
Machine Learning Data Markets: Trading Data using a Multi-Agent System. WI/IAT 2022: 450-457 - 2021
- [j31]Pedro Strecht, João Mendes-Moreira, Carlos Soares:
Inmplode: A framework to interpret multiple related rule-based models. Expert Syst. J. Knowl. Eng. 38(6) (2021) - [j30]André Luis Debiaso Rossi, Carlos Soares, Bruno Feres de Souza, André Carlos Ponce de Leon Ferreira de Carvalho:
Micro-MetaStream: Algorithm selection for time-changing data. Inf. Sci. 565: 262-277 (2021) - [c113]Bernardo Leite, Amr Abdalrahman, João Castro, Julieta Frade, João Moreira, Carlos Soares:
Novelty Detection in Physical Activity. ICAART (2) 2021: 859-865 - [c112]André Ferreira Cruz, Pedro Saleiro, Catarina G. Belém, Carlos Soares, Pedro Bizarro:
Promoting Fairness through Hyperparameter Optimization. ICDM 2021: 1036-1041 - [c111]Filipa Barros, Vítor Cerqueira, Carlos Soares:
Empirical Study on the Impact of Different Sets of Parameters of Gradient Boosting Algorithms for Time-Series Forecasting with LightGBM. PRICAI (1) 2021: 454-465 - [e7]Carlos Soares, Luís Torgo:
Discovery Science - 24th International Conference, DS 2021, Halifax, NS, Canada, October 11-13, 2021, Proceedings. Lecture Notes in Computer Science 12986, Springer 2021, ISBN 978-3-030-88941-8 [contents] - [i28]Tomas Sousa Pereira, Tiago Cunha, Carlos Soares:
u-cf2vec: Representation Learning for Personalized Algorithm Selection in Recommender Systems. CoRR abs/2103.05673 (2021) - [i27]André Ferreira Cruz, Pedro Saleiro, Catarina G. Belém, Carlos Soares, Pedro Bizarro:
Promoting Fairness through Hyperparameter Optimization. CoRR abs/2103.12715 (2021) - [i26]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Model Selection for Time Series Forecasting: Empirical Analysis of Different Estimators. CoRR abs/2104.00584 (2021) - [i25]Vítor Cerqueira, Luís Torgo, Carlos Soares, Albert Bifet:
Model Compression for Dynamic Forecast Combination. CoRR abs/2104.01830 (2021) - [i24]André Baptista, Yassine Baghoussi, Carlos Soares, João Mendes-Moreira, Miguel Arantes:
Pastprop-RNN: improved predictions of the future by correcting the past. CoRR abs/2106.13881 (2021) - [i23]Tarsicio Lucas, Teresa Bernarda Ludermir, Ricardo B. C. Prudêncio, Carlos Soares:
Meta-aprendizado para otimizacao de parametros de redes neurais. CoRR abs/2109.13745 (2021) - 2020
- [j29]Adriano Rivolli, Jesse Read, Carlos Soares, Bernhard Pfahringer, André C. P. L. F. de Carvalho:
An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Mach. Learn. 109(8): 1509-1563 (2020) - [c110]David Ribeiro, João Costa, Inês Lopes, Telmo Barbosa, Carlos Soares, Filipe Sousa, Jorge Ribeiro, Duarte Rocha, Marlos Silva:
FILLET - Platform for Intelligent Nutrition. AICCSA 2020: 1-8 - [c109]João Costa, Inês Lopes, André V. Carreiro, David Ribeiro, Carlos Soares:
Fraunhofer AICOS at CLEF eHealth 2020 Task 1: Clinical Code Extraction From Textual Data Using Fine-Tuned BERT Models. CLEF (Working Notes) 2020 - [c108]Tomas Sousa Pereira, Tiago Cunha, Carlos Soares:
$\mu-\text{cf}2\text{vec}$: Representation Learning for Personalized Algorithm Selection in Recommender Systems. ICDM (Workshops) 2020: 181-188 - [c107]Bernardo Leite, Henrique Lopes Cardoso, Luís Paulo Reis, Carlos Soares:
Factual Question Generation for the Portuguese Language. INISTA 2020: 1-7 - [c106]Yassine Baghoussi, João Mendes-Moreira, Nuno Moniz, Carlos Soares:
Underground Train Tracking using Mobile Phone Accelerometer Data. ITSC 2020: 1-6 - [i22]André Ferreira Cruz, Pedro Saleiro, Catarina G. Belém, Carlos Soares, Pedro Bizarro:
A Bandit-Based Algorithm for Fairness-Aware Hyperparameter Optimization. CoRR abs/2010.03665 (2020) - [i21]Vítor Cerqueira, Nuno Moniz, Carlos Soares:
VEST: Automatic Feature Engineering for Forecasting. CoRR abs/2010.07137 (2020) - [i20]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Early Anomaly Detection in Time Series: A Hierarchical Approach for Predicting Critical Health Episodes. CoRR abs/2010.11595 (2020)
2010 – 2019
- 2019
- [j28]Alvaro Neuenfeldt Júnior, Elsa Silva, Antonio Miguel Gomes, Carlos Soares, José Fernando Oliveira:
Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem. Expert Syst. Appl. 118: 365-380 (2019) - [j27]Vítor Cerqueira, Luís Torgo, Fábio Pinto, Carlos Soares:
Arbitrage of forecasting experts. Mach. Learn. 108(6): 913-944 (2019) - [c105]André Correia, Carlos Soares, Alípio Jorge:
Dataset Morphing to Analyze the Performance of Collaborative Filtering. DS 2019: 29-39 - [c104]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Layered Learning for Early Anomaly Detection: Predicting Critical Health Episodes. DS 2019: 445-459 - [c103]Adriano Rivolli, Catarina Amaral, Luís Guardão, Cláudio Rebelo de Sá, Carlos Soares:
KnowBots: Discovering Relevant Patterns in Chatbot Dialogues. DS 2019: 481-492 - [c102]Cláudio Rebelo de Sá, Arvind Kumar Shekar, Hugo M. Ferreira, Carlos Soares:
Building Robust Prediction Models for Defective Sensor Data Using Artificial Neural Networks. SOCO 2019: 142-153 - [i19]Cláudio Rebelo de Sá, Paulo J. Azevedo, Carlos Soares, Alípio Mário Jorge, Arno J. Knobbe:
Preference rules for label ranking: Mining patterns in multi-target relations. CoRR abs/1903.08504 (2019) - [i18]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Machine Learning vs Statistical Methods for Time Series Forecasting: Size Matters. CoRR abs/1909.13316 (2019) - 2018
- [j26]Adriano Rivolli, Carlos Soares, André C. P. L. F. de Carvalho:
Enhancing multilabel classification for food truck recommendation. Expert Syst. J. Knowl. Eng. 35(4) (2018) - [j25]Cláudio Rebelo de Sá, Paulo J. Azevedo, Carlos Soares, Alípio Mário Jorge, Arno J. Knobbe:
Preference rules for label ranking: Mining patterns in multi-target relations. Inf. Fusion 40: 112-125 (2018) - [j24]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
Metalearning and Recommender Systems: A literature review and empirical study on the algorithm selection problem for Collaborative Filtering. Inf. Sci. 423: 128-144 (2018) - [j23]Cláudio Rebelo de Sá, Wouter Duivesteijn, Paulo J. Azevedo, Alípio Mário Jorge, Carlos Soares, Arno J. Knobbe:
Discovering a taste for the unusual: exceptional models for preference mining. Mach. Learn. 107(11): 1775-1807 (2018) - [c101]Silvia Cristina Nunes das Dores, Carlos Soares, Duncan D. Ruiz:
Bandit-Based Automated Machine Learning. BRACIS 2018: 121-126 - [c100]Adriano Rivolli, Carlos Soares, André C. P. L. F. de Carvalho:
Label Expansion for Multi-label Classification. BRACIS 2018: 414-419 - [c99]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
CF4CF-META: Hybrid Collaborative Filtering Algorithm Selection Framework. DS 2018: 114-128 - [c98]Marta Mercier, Miriam Seoane Santos, Pedro H. Abreu, Carlos Soares, Jastin Pompeu Soares, João A. M. Santos:
Analysing the Footprint of Classifiers in Overlapped and Imbalanced Contexts. IDA 2018: 200-212 - [c97]Pedro Oliveira da Silva, Adriano Rivolli, Pedro Rocha, Francisco Correia, Carlos Soares:
Machine Learning for Drugs Prescription. IDEAL (1) 2018: 548-555 - [c96]Pedro Strecht, João Mendes-Moreira, Carlos Soares:
Generalizing Knowledge in Decentralized Rule-Based Models. DMLE/IOTSTREAMING@PKDD/ECML 2018: 29-36 - [c95]Vítor Cerqueira, Fábio Pinto, Luís Torgo, Carlos Soares, Nuno Moniz:
Constructive Aggregation and Its Application to Forecasting with Dynamic Ensembles. ECML/PKDD (1) 2018: 620-636 - [c94]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
CF4CF: recommending collaborative filtering algorithms using collaborative filtering. RecSys 2018: 357-361 - [c93]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
A label ranking approach for selecting rankings of collaborative filtering algorithms. SAC 2018: 1393-1395 - [c92]Pedro Strecht, João Mendes-Moreira, Carlos Soares:
A Framework for Analytical Approaches to Combine Interpretable Models. SIMBig 2018: 182-197 - [i17]Dylan te Lindert, Cláudio Rebelo de Sá, Carlos Soares, Arno J. Knobbe:
Smart energy management as a means towards improved energy efficiency. CoRR abs/1802.04128 (2018) - [i16]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
CF4CF: Recommending Collaborative Filtering algorithms using Collaborative Filtering. CoRR abs/1803.02250 (2018) - [i15]Arvind Kumar Shekar, Cláudio Rebelo de Sá, Hugo Ferreira, Carlos Soares:
Building robust prediction models for defective sensor data using Artificial Neural Networks. CoRR abs/1804.05544 (2018) - [i14]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
Algorithm Selection for Collaborative Filtering: the influence of graph metafeatures and multicriteria metatargets. CoRR abs/1807.09097 (2018) - [i13]Adriano Rivolli, Luís Paulo F. Garcia, Carlos Soares, Joaquin Vanschoren, André C. P. L. F. de Carvalho:
Towards Reproducible Empirical Research in Meta-Learning. CoRR abs/1808.10406 (2018) - [i12]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
cf2vec: Collaborative Filtering algorithm selection using graph distributed representations. CoRR abs/1809.06120 (2018) - [i11]Pedro Saleiro, Natasa Milic-Frayling, Eduarda Mendes Rodrigues, Carlos Soares:
Entity-Relationship Search over the Web. CoRR abs/1810.03235 (2018) - 2017
- [j22]Cláudio Rebelo de Sá, Carlos Soares, Arno J. Knobbe, Paulo Cortez:
Label Ranking Forests. Expert Syst. J. Knowl. Eng. 34(1) (2017) - [j21]André Luis Debiaso Rossi, Bruno Feres de Souza, Carlos Soares, André Carlos Ponce de Leon Ferreira de Carvalho:
A guidance of data stream characterization for meta-learning. Intell. Data Anal. 21(4): 1015-1035 (2017) - [j20]Pedro Saleiro, Eduarda Mendes Rodrigues, Carlos Soares, Eugénio Oliveira:
TexRep: A Text Mining Framework for Online Reputation Monitoring. New Gener. Comput. 35(4): 365-389 (2017) - [c91]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers. DS 2017: 189-203 - [c90]Pedro Saleiro, Luís Sarmento, Eduarda Mendes Rodrigues, Carlos Soares, Eugénio C. Oliveira:
Learning Word Embeddings from the Portuguese Twitter Stream: A Study of Some Practical Aspects. EPIA 2017: 880-891 - [c89]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Arbitrated Ensemble for Solar Radiation Forecasting. IWANN (1) 2017: 720-732 - [c88]Fábio Pinto, Vítor Cerqueira, Carlos Soares, João Mendes-Moreira:
autoBagging: Learning to Rank Bagging Workflows with Metalearning. AutoML@PKDD/ECML 2017: 21-27 - [c87]Silvia Nunes das Dôres, Carlos Soares, Duncan D. A. Ruiz:
Effect of Metalearning on Feature Selection Employment. AutoML@PKDD/ECML 2017: 84-90 - [c86]Vítor Cerqueira, Luís Torgo, Fábio Pinto, Carlos Soares:
Arbitrated Ensemble for Time Series Forecasting. ECML/PKDD (2) 2017: 478-494 - [c85]Tiago Cunha, Carlos Soares, André C. P. L. F. de Carvalho:
Metalearning for Context-aware Filtering: Selection of Tensor Factorization Algorithms. RecSys 2017: 14-22 - [c84]Pedro Saleiro, Eduarda Mendes Rodrigues, Carlos Soares, Eugénio C. Oliveira:
FEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with Financial Word Embeddings. SemEval@ACL 2017: 904-908 - [c83]Pedro Saleiro, Natasa Milic-Frayling, Eduarda Mendes Rodrigues, Carlos Soares:
Early Fusion Strategy for Entity-Relationship Retrieval. KG4IR@SIGIR 2017: 49-54 - [c82]Pedro Saleiro, Natasa Milic-Frayling, Eduarda Mendes Rodrigues, Carlos Soares:
RELink: A Research Framework and Test Collection for Entity-Relationship Retrieval. SIGIR 2017: 1273-1276 - [r5]Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil, Carlos Soares:
Inductive Transfer. Encyclopedia of Machine Learning and Data Mining 2017: 666-671 - [r4]Pavel Brazdil, Ricardo Vilalta, Christophe G. Giraud-Carrier, Carlos Soares:
Metalearning. Encyclopedia of Machine Learning and Data Mining 2017: 818-823 - [i10]Pedro Saleiro, Eduarda Mendes Rodrigues, Carlos Soares, Eugénio C. Oliveira:
FEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with Financial Word Embeddings. CoRR abs/1704.05091 (2017) - [i9]Pedro Saleiro, Natasa Milic-Frayling, Eduarda Mendes Rodrigues, Carlos Soares:
RELink: A Research Framework and Test Collection for Entity-Relationship Retrieval. CoRR abs/1706.03960 (2017) - [i8]Fábio Pinto, Vítor Cerqueira, Carlos Soares, João Mendes-Moreira:
autoBagging: Learning to Rank Bagging Workflows with Metalearning. CoRR abs/1706.09367 (2017) - [i7]