


Остановите войну!
for scientists:


default search action
Hoi-Jun Yoo
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j152]Dongseok Im
, Gwangtae Park
, Junha Ryu
, Zhiyong Li
, Sanghoon Kang
, Donghyeon Han
, Jinsu Lee
, Wonhoon Park, Hankyul Kwon, Hoi-Jun Yoo
:
DSPU: An Efficient Deep Learning-Based Dense RGB-D Data Acquisition With Sensor Fusion and 3-D Perception SoC. IEEE J. Solid State Circuits 58(1): 177-188 (2023) - [j151]Zhiyong Li
, Sangjin Kim
, Dongseok Im
, Donghyeon Han
, Hoi-Jun Yoo
:
An Efficient Deep-Learning-Based Super-Resolution Accelerating SoC With Heterogeneous Accelerating and Hierarchical Cache. IEEE J. Solid State Circuits 58(3): 614-623 (2023) - [j150]Dongseok Im
, Gwangtae Park
, Zhiyong Li
, Junha Ryu
, Sanghoon Kang
, Donghyeon Han
, Jinsu Lee
, Wonhoon Park, Hankyul Kwon, Hoi-Jun Yoo
:
A Mobile 3-D Object Recognition Processor With Deep-Learning-Based Monocular Depth Estimation. IEEE Micro 43(3): 74-82 (2023) - [c280]Donghyeon Han, Junha Ryu, Sangyeob Kim, Sangjin Kim, Jongjun Park, Hoi-Jun Yoo:
A Low-power Neural 3D Rendering Processor with Bio-inspired Visual Perception Core and Hybrid DNN Acceleration. COOL CHIPS 2023: 1-3 - [c279]Sangyeob Kim, Soyeon Kim, Seongyon Hong, Sangjin Kim, Donghyeon Han, Jiwon Choi, Hoi-Jun Yoo:
COOL-NPU: Complementary Online Learning Neural Processing Unit with CNN-SNN Heterogeneous Core and Event-driven Backpropagation. COOL CHIPS 2023: 1-3 - [c278]Dongseok Im, Gwangtae Park, Zhiyong Li, Junha Ryu, Hoi-Jun Yoo:
Sibia: Signed Bit-slice Architecture for Dense DNN Acceleration with Slice-level Sparsity Exploitation. HPCA 2023: 69-80 - [c277]Seongyon Hong, Soyeon Um, Sangjin Kim, Sangyeob Kim, Wooyoung Jo, Hoi-Jun Yoo:
A 332 TOPS/W Input/Weight-Parallel Computing-in-Memory Processor with Voltage-Capacitance-Ratio Cell and Time-Based ADC. ISCAS 2023: 1-5 - [c276]Seryeong Kim, Soyeon Kim, Soyeon Um, Sangjin Kim, Zhiyong Li, Sangyeob Kim, Wooyoung Jo, Hoi-Jun Yoo:
A Reconfigurable 1T1C eDRAM-based Spiking Neural Network Computing-In-Memory Processor for High System-Level Efficiency. ISCAS 2023: 1-5 - [c275]Hankyul Kwon, Gwangtae Park, Junha Ryu, Wooyoung Jo, Hoi-Jun Yoo:
A 15.9 mW 96.5 fps Memory-Efficient 3D Reconstruction Processor with Dilation-based TSDF Fusion and Block-Projection Cache System. ISCAS 2023: 1-5 - [c274]Wonhoon Park, Junha Ryu, Sangjin Kim, Soyeon Um, Wooyoung Jo, Sangyoeb Kim, Hoi-Jun Yoo:
A 5.99 TFLOPS/W Heterogeneous CIM-NPU Architecture for an Energy Efficient Floating-Point DNN Acceleration. ISCAS 2023: 1-4 - [c273]Donghyeon Han, Junha Ryu, Sangyeob Kim, Sangjin Kim, Hoi-Jun Yoo:
MetaVRain: A 133mW Real-Time Hyper-Realistic 3D-NeRF Processor with 1D-2D Hybrid-Neural Engines for Metaverse on Mobile Devices. ISSCC 2023: 50-51 - [c272]Sangjin Kim, Zhiyong Li, Soyeon Um, Wooyoung Jo, Sangwoo Ha, Juhyoung Lee, Sangyeob Kim, Donghyeon Han, Hoi-Jun Yoo:
DynaPlasia: An eDRAM In-Memory-Computing-Based Reconfigurable Spatial Accelerator with Triple-Mode Cell for Dynamic Resource Switching. ISSCC 2023: 256-257 - [c271]Sangyeob Kim, Soyeon Kim, Seongyon Hong, Sangjin Kim, Donghyeon Han, Hoi-Jun Yoo:
C-DNN: A 24.5-85.8TOPS/W Complementary-Deep-Neural-Network Processor with Heterogeneous CNN/SNN Core Architecture and Forward-Gradient-Based Sparsity Generation. ISSCC 2023: 334-335 - [c270]Wooyoung Jo, Sangjin Kim, Juhyoung Lee, Donghyeon Han, Sangyeob Kim, Seungyoon Choi, Hoi-Jun Yoo:
NeRPIM: A 4.2 mJ/frame Neural Rendering Processing-in-memory Processor with Space Encoding Block-wise Mapping for Mobile Devices. VLSI Technology and Circuits 2023: 1-2 - [c269]Sangjin Kim, Soyeon Um, Wooyoung Jo, Jingu Lee, Sangwoo Ha, Zhiyong Li, Hoi-Jun Yoo:
Scaling-CIM: An eDRAM-based In-Memory-Computing Accelerator with Dynamic-Scaling ADC for SQNR-Boosting and Layer-wise Adaptive Bit-Truncation. VLSI Technology and Circuits 2023: 1-2 - [c268]Seokchan Song, Donghyeon Han, Sangjin Kim, Sangyeob Kim, Gwangtae Park, Hoi-Jun Yoo:
GPPU: A 330.4-μJ/ task Neural Path Planning Processor with Hybrid GNN Acceleration for Autonomous 3D Navigation. VLSI Technology and Circuits 2023: 1-2 - [c267]Wenao Xie, Haoyang Sang, Beomseok Kwon, Dongseok Im, Sangjin Kim, Sangyeob Kim, Hoi-Jun Yoo:
A 709.3 TOPS/W Event-Driven Smart Vision SoC with High-Linearity and Reconfigurable MRAM PIM. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j149]Kwantae Kim
, Sangyeob Kim
, Hoi-Jun Yoo
:
Design of Sub-10-μW Sub-0.1% THD Sinusoidal Current Generator IC for Bio-Impedance Sensing. IEEE J. Solid State Circuits 57(2): 586-595 (2022) - [j148]Dongseok Im
, Donghyeon Han
, Sanghoon Kang
, Hoi-Jun Yoo
:
A Pipelined Point Cloud Based Neural Network Processor for 3-D Vision With Large-Scale Max Pooling Layer Prediction. IEEE J. Solid State Circuits 57(2): 661-670 (2022) - [j147]Juhyoung Lee
, Sangyeob Kim
, Sangjin Kim
, Wooyoung Jo
, Ji-Hoon Kim
, Donghyeon Han
, Hoi-Jun Yoo
:
OmniDRL: An Energy-Efficient Deep Reinforcement Learning Processor With Dual-Mode Weight Compression and Sparse Weight Transposer. IEEE J. Solid State Circuits 57(4): 999-1012 (2022) - [j146]Surin Gweon
, Sanghoon Kang
, Kwantae Kim
, Hoi-Jun Yoo
:
FlashMAC: A Time-Frequency Hybrid MAC Architecture With Variable Latency-Aware Scheduling for TinyML Systems. IEEE J. Solid State Circuits 57(10): 2944-2956 (2022) - [j145]Kwantae Kim
, Chang Gao
, Rui Graça
, Ilya Kiselev
, Hoi-Jun Yoo
, Tobi Delbruck
, Shih-Chii Liu
:
A 23-μW Keyword Spotting IC With Ring-Oscillator-Based Time-Domain Feature Extraction. IEEE J. Solid State Circuits 57(11): 3298-3311 (2022) - [j144]Juhyoung Lee
, Jihoon Kim
, Wooyoung Jo
, Sangyeob Kim
, Sangjin Kim
, Hoi-Jun Yoo
:
ECIM: Exponent Computing in Memory for an Energy-Efficient Heterogeneous Floating-Point DNN Training Processor. IEEE Micro 42(1): 99-107 (2022) - [j143]Donghyeon Han
, Dongseok Im
, Gwangtae Park
, Youngwoo Kim
, Seokchan Song
, Juhyoung Lee
, Hoi-Jun Yoo
:
A Mobile DNN Training Processor With Automatic Bit Precision Search and Fine-Grained Sparsity Exploitation. IEEE Micro 42(2): 16-25 (2022) - [j142]Sangyeob Kim
, Juhyoung Lee
, Sanghoon Kang
, Donghyeon Han
, Wooyoung Jo
, Hoi-Jun Yoo
:
TSUNAMI: Triple Sparsity-Aware Ultra Energy-Efficient Neural Network Training Accelerator With Multi-Modal Iterative Pruning. IEEE Trans. Circuits Syst. I Regul. Pap. 69(4): 1494-1506 (2022) - [j141]Sangjin Kim
, Sangyeob Kim
, Juhyoung Lee
, Hoi-Jun Yoo
:
A Low-Power Graph Convolutional Network Processor With Sparse Grouping for 3D Point Cloud Semantic Segmentation in Mobile Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 69(4): 1507-1518 (2022) - [j140]Sangwoo Ha
, Sangjin Kim
, Donghyeon Han
, Soyeon Um
, Hoi-Jun Yoo
:
A 36.2 dB High SNR and PVT/Leakage-Robust eDRAM Computing-In-Memory Macro With Segmented BL and Reference Cell Array. IEEE Trans. Circuits Syst. II Express Briefs 69(5): 2433-2437 (2022) - [j139]Seokchan Song
, Soyeon Kim
, Gwangtae Park
, Donghyeon Han
, Hoi-Jun Yoo
:
A 49.5 mW Multi-Scale Linear Quantized Online Learning Processor for Real-Time Adaptive Object Detection. IEEE Trans. Circuits Syst. II Express Briefs 69(5): 2443-2447 (2022) - [c266]Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, Hoi-Jun Yoo:
A 0.95 mJ/frame DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation. AICAS 2022: 37-40 - [c265]Juhyoung Lee, Wooyoung Jo, Seong-Wook Park, Hoi-Jun Yoo:
Low-power Autonomous Adaptation System with Deep Reinforcement Learning. AICAS 2022: 300-303 - [c264]Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, Hoi-Jun Yoo:
A DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation. AICAS 2022: 501 - [c263]Zhiyong Li, Sangjin Kim, Dongseok Im, Donghyeon Han, Hoi-Jun Yoo:
An 0.92 mJ/frame High-quality FHD Super-resolution Mobile Accelerator SoC with Hybrid-precision and Energy-efficient Cache. CICC 2022: 1-2 - [c262]Dongseok Im, Gwangtae Park, Junha Ryu, Zhiyong Li, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Wonhoon Park, Hankyul Kwon, Hoi-Jun Yoo:
A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms. COOL CHIPS 2022: 1-3 - [c261]Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, Hoi-Jun Yoo:
HNPU-V2: A 46.6 FPS DNN Training Processor for Real-World Environmental Adaptation based Robust Object Detection on Mobile Devices. HCS 2022: 1-18 - [c260]Dongseok Im, Gwangtae Park, Zhiyong Li, Junha Ryu, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Wonhoon Park, Hankyul Kwon, Hoi-Jun Yoo:
DSPU: A 281.6mW Real-Time Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3D Perception System-on-Chip. HCS 2022: 1-25 - [c259]Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Kwantae Kim, Hoi-Jun Yoo:
Neuro-CIM: A 310.4 TOPS/W Neuromorphic Computing-in-Memory Processor with Low WL/BL activity and Digital-Analog Mixed-mode Neuron Firing. HCS 2022: 1-25 - [c258]Zhiyong Li, Sangjin Kim, Dongseok Im, Donghyeon Han, Hoi-Jun Yoo:
An Efficient High-quality FHD Super-resolution Mobile Accelerator SoC with Hybrid-precision and Energy-efficient Cache. HCS 2022: 1-26 - [c257]Wooyoung Jo, Sangjin Kim, Juhyeong Lee, Soyeon Um, Zhiyong Li
, Hoi-Jun Yoo:
A 161.6 TOPS/W Mixed-mode Computing-in-Memory Processor for Energy-Efficient Mixed-Precision Deep Neural Networks. ISCAS 2022: 365-369 - [c256]Kwantae Kim
, Chang Gao
, Rui Graça, Ilya Kiselev, Hoi-Jun Yoo, Tobi Delbrück, Shih-Chii Liu:
A 23μW Solar-Powered Keyword-Spotting ASIC with Ring-Oscillator-Based Time-Domain Feature Extraction. ISSCC 2022: 1-3 - [c255]Dongseok Im, Gwangtae Park, Zhiyong Li, Junha Ryu, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Hoi-Jun Yoo:
DSPU: A 281.6mW Real-Time Depth Signal Processing Unit for Deep Learning-Based Dense RGB-D Data Acquisition with Depth Fusion and 3D Bounding Box Extraction in Mobile Platforms. ISSCC 2022: 510-512 - [c254]Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Kwantae Kim
, Hoi-Jun Yoo:
Neuro-CIM: A 310.4 TOPS/W Neuromorphic Computing-in-Memory Processor with Low WL/BL activity and Digital-Analog Mixed-mode Neuron Firing. VLSI Technology and Circuits 2022: 38-39 - [i6]Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Hoi-Jun Yoo:
Two-Step Spike Encoding Scheme and Architecture for Highly Sparse Spiking-Neural-Network. CoRR abs/2202.03601 (2022) - [i5]Dongseok Im, Gwangtae Park, Zhiyong Li, Junha Ryu, Hoi-Jun Yoo:
Energy-efficient Dense DNN Acceleration with Signed Bit-slice Architecture. CoRR abs/2203.07679 (2022) - [i4]Kwantae Kim, Chang Gao, Rui Graça, Ilya Kiselev, Hoi-Jun Yoo, Tobi Delbrück, Shih-Chii Liu:
A 23 μW Keyword Spotting IC with Ring-Oscillator-Based Time-Domain Feature Extraction. CoRR abs/2208.00693 (2022) - 2021
- [j138]Sanghoon Kang
, Gwangtae Park
, Sangjin Kim
, Soyeon Kim
, Donghyeon Han
, Hoi-Jun Yoo
:
An Overview of Sparsity Exploitation in CNNs for On-Device Intelligence With Software-Hardware Cross-Layer Optimizations. IEEE J. Emerg. Sel. Topics Circuits Syst. 11(4): 634-648 (2021) - [j137]Jaehyuk Lee
, Surin Gweon, Kwonjoon Lee
, Soyeon Um
, Kyoung-Rog Lee
, Hoi-Jun Yoo
:
A 9.6-mW/Ch 10-MHz Wide-Bandwidth Electrical Impedance Tomography IC With Accurate Phase Compensation for Early Breast Cancer Detection. IEEE J. Solid State Circuits 56(3): 887-898 (2021) - [j136]Donghyeon Han
, Jinsu Lee
, Hoi-Jun Yoo
:
DF-LNPU: A Pipelined Direct Feedback Alignment-Based Deep Neural Network Learning Processor for Fast Online Learning. IEEE J. Solid State Circuits 56(5): 1630-1640 (2021) - [j135]Jihee Lee, Kyoung-Rog Lee
, Benjamin E. Eovino, Jeong Hoan Park, Luna Yue Liang
, Liwei Lin
, Hoi-Jun Yoo
, Jerald Yoo
:
A 36-Channel Auto-Calibrated Front-End ASIC for a pMUT-Based Miniaturized 3-D Ultrasound System. IEEE J. Solid State Circuits 56(6): 1910-1923 (2021) - [j134]Sanghoon Kang
, Donghyeon Han
, Juhyoung Lee
, Dongseok Im
, Sangyeob Kim
, Soyeon Kim
, Junha Ryu
, Hoi-Jun Yoo
:
GANPU: An Energy-Efficient Multi-DNN Training Processor for GANs With Speculative Dual-Sparsity Exploitation. IEEE J. Solid State Circuits 56(9): 2845-2857 (2021) - [j133]Donghyeon Han
, Dongseok Im
, Gwangtae Park
, Youngwoo Kim
, Seokchan Song
, Juhyoung Lee
, Hoi-Jun Yoo
:
HNPU: An Adaptive DNN Training Processor Utilizing Stochastic Dynamic Fixed-Point and Active Bit-Precision Searching. IEEE J. Solid State Circuits 56(9): 2858-2869 (2021) - [j132]Soyeon Kim
, Sanghoon Kang
, Donghyeon Han
, Sangjin Kim
, Sangyeob Kim
, Hoi-Jun Yoo
:
An Energy-Efficient GAN Accelerator With On-Chip Training for Domain-Specific Optimization. IEEE J. Solid State Circuits 56(10): 2968-2980 (2021) - [j131]Kwonjoon Lee
, Hoi-Jun Yoo
:
Simultaneous Electrical Bio-Impedance Plethysmography at Different Body Parts: Continuous and Non-Invasive Monitoring of Pulse Wave Velocity. IEEE Trans. Biomed. Circuits Syst. 15(5): 1027-1038 (2021) - [j130]Soyeon Um
, Sangyeob Kim
, Sangjin Kim
, Hoi-Jun Yoo
:
A 43.1TOPS/W Energy-Efficient Absolute-Difference-Accumulation Operation Computing-In-Memory With Computation Reuse. IEEE Trans. Circuits Syst. II Express Briefs 68(5): 1605-1609 (2021) - [j129]Soyeon Kim
, Sangjin Kim
, Sangyeob Kim
, Donghyeon Han
, Hoi-Jun Yoo
:
A 64.1mW Accurate Real-Time Visual Object Tracking Processor With Spatial Early Stopping on Siamese Network. IEEE Trans. Circuits Syst. II Express Briefs 68(5): 1675-1679 (2021) - [j128]Junha Ryu
, Gwangtae Park
, Dongseok Im
, Ji-Hoon Kim
, Hoi-Jun Yoo
:
A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices. IEEE Trans. Circuits Syst. II Express Briefs 68(5): 1700-1704 (2021) - [c253]Juhyoung Lee, Changhyeon Kim, Donghyeon Han, Sangyeob Kim, Sangjin Kim, Hoi-Jun Yoo:
Energy-Efficient Deep Reinforcement Learning Accelerator Designs for Mobile Autonomous Systems. AICAS 2021: 1-4 - [c252]Surin Gweon, Sanghoon Kang, Donghyeon Han, Kyoung-Rog Lee, Kwantae Kim
, Hoi-Jun Yoo:
FlashMAC: An Energy-Efficient Analog-Digital Hybrid MAC with Variable Latency-Aware Scheduling. A-SSCC 2021: 1-3 - [c251]Wooyoung Jo, Juhyoung Lee, Seunghyun Park, Hoi-Jun Yoo:
An Energy-Efficient Deep Reinforcement Learning FPGA Accelerator for Online Fast Adaptation with Selective Mixed-precision Re-training. A-SSCC 2021: 1-3 - [c250]Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, Hoi-Jun Yoo:
An Energy-Efficient Deep Neural Network Training Processor with Bit-Slice-Level Reconfigurability and Sparsity Exploitation. COOL CHIPS 2021: 1-3 - [c249]Sangjin Kim, Juhyoung Lee, Dongseok Im, Hoi-Jun Yoo:
PNNPU: A Fast and Efficient 3D Point Cloud-based Neural Network Processor with Block-based Point Processing for Regular DRAM Access. HCS 2021: 1-23 - [c248]Juhyoung Lee, Jihoon Kim, Wooyoung Jo, Sangyeob Kim, Sangjin Kim, Donghyeon Han, Jinsu Lee, Hoi-Jun Yoo:
An Energy-efficient Floating-Point DNN Processor using Heterogeneous Computing Architecture with Exponent-Computing-in-Memory. HCS 2021: 1-20 - [c247]Juhyoung Lee, Sangyeob Kim, Ji-Hoon Kim, Sangjin Kim, Wooyoung Jo, Donghyeon Han, Hoi-Jun Yoo:
OmniDRL: An Energy-Efficient Mobile Deep Reinforcement Learning Accelerators with Dual-mode Weight Compression and Direct Processing of Compressed Data. HCS 2021: 1-21 - [c246]Zhiyong Li, Dongseok Im, Jinsu Lee, Hoi-Jun Yoo:
A 3.6 TOPS/W Hybrid FP-FXP Deep Learning Processor with Outlier Compensation for Image-to-Image Application. ISCAS 2021: 1-5 - [c245]Sangjin Kim, Juhyoung Lee, Dongseok Im, Hoi-Jun Yoo:
PNNPU: A 11.9 TOPS/W High-speed 3D Point Cloud-based Neural Network Processor with Block-based Point Processing for Regular DRAM Access. VLSI Circuits 2021: 1-2 - [c244]Juhyoung Lee, Jihoon Kim, Wooyoung Jo, Sangyeob Kim, Sangjin Kim, Jinsu Lee, Hoi-Jun Yoo:
A 13.7 TFLOPS/W Floating-point DNN Processor using Heterogeneous Computing Architecture with Exponent-Computing-in-Memory. VLSI Circuits 2021: 1-2 - [c243]Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, Donghyeon Han, Jinsu Lee, Hoi-Jun Yoo:
OmniDRL: A 29.3 TFLOPS/W Deep Reinforcement Learning Processor with Dualmode Weight Compression and On-chip Sparse Weight Transposer. VLSI Circuits 2021: 1-2 - [i3]Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, Hoi-Jun Yoo:
GST: Group-Sparse Training for Accelerating Deep Reinforcement Learning. CoRR abs/2101.09650 (2021) - 2020
- [j127]Juhyoung Lee
, Jinsu Lee
, Hoi-Jun Yoo
:
SRNPU: An Energy-Efficient CNN-Based Super-Resolution Processor With Tile-Based Selective Super-Resolution in Mobile Devices. IEEE J. Emerg. Sel. Topics Circuits Syst. 10(3): 320-334 (2020) - [j126]Kwantae Kim
, Ji-Hoon Kim
, Surin Gweon, Minseo Kim
, Hoi-Jun Yoo
:
A 0.5-V Sub-10-μW 15.28-mΩ/√Hz Bio-Impedance Sensor IC With Sub-1° Phase Error. IEEE J. Solid State Circuits 55(8): 2161-2173 (2020) - [j125]Jaeeun Jang
, Jihee Lee, Hyunwoo Cho, Jaehyuk Lee
, Hoi-Jun Yoo
:
Wireless Body-Area-Network Transceiver and Low-Power Receiver With High Application Expandability. IEEE J. Solid State Circuits 55(10): 2781-2789 (2020) - [j124]Dongjoo Shin
, Hoi-Jun Yoo
:
The Heterogeneous Deep Neural Network Processor With a Non-von Neumann Architecture. Proc. IEEE 108(8): 1245-1260 (2020) - [j123]Sangyeob Kim
, Juhyoung Lee
, Sanghoon Kang
, Jinsu Lee
, Hoi-Jun Yoo
:
A Power-Efficient CNN Accelerator With Similar Feature Skipping for Face Recognition in Mobile Devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 67-I(4): 1181-1193 (2020) - [j122]Youngwoo Kim
, Donghyeon Han
, Changhyeon Kim
, Hoi-Jun Yoo
:
A 0.22-0.89 mW Low-Power and Highly-Secure Always-On Face Recognition Processor With Adversarial Attack Prevention. IEEE Trans. Circuits Syst. II Express Briefs 67-II(5): 846-850 (2020) - [j121]Gwangtae Park
, Dongseok Im
, Donghyeon Han
, Hoi-Jun Yoo
:
A 1.15 TOPS/W Energy-Efficient Capsule Network Accelerator for Real-Time 3D Point Cloud Segmentation in Mobile Environment. IEEE Trans. Circuits Syst. II Express Briefs 67-II(9): 1594-1598 (2020) - [j120]Jinsu Lee
, Sanghoon Kang
, Jinmook Lee
, Dongjoo Shin
, Donghyeon Han
, Hoi-Jun Yoo
:
The Hardware and Algorithm Co-Design for Energy-Efficient DNN Processor on Edge/Mobile Devices. IEEE Trans. Circuits Syst. 67-I(10): 3458-3470 (2020) - [j119]Dongseok Im
, Donghyeon Han
, Sungpill Choi
, Sanghoon Kang
, Hoi-Jun Yoo
:
DT-CNN: An Energy-Efficient Dilated and Transposed Convolutional Neural Network Processor for Region of Interest Based Image Segmentation. IEEE Trans. Circuits Syst. 67-I(10): 3471-3483 (2020) - [j118]Kyuho Jason Lee
, Jinmook Lee
, Sungpill Choi
, Hoi-Jun Yoo
:
The Development of Silicon for AI: Different Design Approaches. IEEE Trans. Circuits Syst. 67-I(12): 4719-4732 (2020) - [c242]Soyeon Kim, Sanghoon Kang, Donghyeon Han, Sangyeob Kim, Sangjin Kim, Hoi-Jun Yoo:
An Energy-Efficient GAN Accelerator with On-chip Training for Domain Specific Optimization. A-SSCC 2020: 1-4 - [c241]Jaehyuk Lee, Surin Gweon, Kwonjoon Lee, Soyeon Um, Kyoung-Rog Lee, Kwantae Kim
, Jihee Lee, Hoi-Jun Yoo:
A 9.6 mW/Ch 10 MHz Wide-bandwidth Electrical Impedance Tomography IC with Accurate Phase Compensation for Breast Cancer Detection. CICC 2020: 1-4 - [c240]Hoi-Jun Yoo:
Deep Learning Processors for On-Device Intelligence. ACM Great Lakes Symposium on VLSI 2020: 1-8 - [c239]Sangjin Kim, Sangyeob Kim, Juhyoung Lee, Hoi-Jun Yoo:
A 54.7 fps 3D Point Cloud Semantic Segmentation Processor with Sparse Grouping Based Dilated Graph Convolutional Network for Mobile Devices. ISCAS 2020: 1-5 - [c238]Sanghoon Kang, Donghyeon Han, Juhyoung Lee, Dongseok Im, Sangyeob Kim, Soyeon Kim, Hoi-Jun Yoo:
7.4 GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity Exploitation. ISSCC 2020: 140-142 - [c237]Dongseok Im, Sanghoon Kang, Donghyeon Han, Sungpill Choi, Hoi-Jun Yoo:
A 4.45 ms Low-Latency 3D Point-Cloud-Based Neural Network Processor for Hand Pose Estimation in Immersive Wearable Devices. VLSI Circuits 2020: 1-2 - [c236]Kwantae Kim
, Changhyeon Kim, Sungpill Choi, Hoi-Jun Yoo:
A 0.5V, 6.2μW, 0.059mm2 Sinusoidal Current Generator IC with 0.088% THD for Bio-Impedance Sensing. VLSI Circuits 2020: 1-2 - [c235]Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, Jinmook Lee, Hoi-Jun Yoo:
A 146.52 TOPS/W Deep-Neural-Network Learning Processor with Stochastic Coarse-Fine Pruning and Adaptive Input/Output/Weight Skipping. VLSI Circuits 2020: 1-2 - [c234]Ji-Hoon Kim, Juhyoung Lee, Jinsu Lee, Hoi-Jun Yoo, Joo-Young Kim:
Z-PIM: An Energy-Efficient Sparsity Aware Processing-In-Memory Architecture with Fully-Variable Weight Precision. VLSI Circuits 2020: 1-2 - [i2]Donghyeon Han, Gwangtae Park, Junha Ryu, Hoi-Jun Yoo:
Extension of Direct Feedback Alignment to Convolutional and Recurrent Neural Network for Bio-plausible Deep Learning. CoRR abs/2006.12830 (2020)
2010 – 2019
- 2019
- [j117]Chia-Yu Chen
, Boris Murmann
, Jae-sun Seo
, Hoi-Jun Yoo
:
Custom Sub-Systems and Circuits for Deep Learning: Guest Editorial Overview. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(2): 247-252 (2019) - [j116]Sungpill Choi
, Kyeongryeol Bong
, Donghyeon Han
, Hoi-Jun Yoo
:
CNNP-v2: A Memory-Centric Architecture for Low-Power CNN Processor on Domain-Specific Mobile Devices. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(4): 598-611 (2019) - [j115]Jinmook Lee
, Changhyeon Kim
, Sanghoon Kang
, Dongjoo Shin
, Sangyeob Kim, Hoi-Jun Yoo:
UNPU: An Energy-Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision. IEEE J. Solid State Circuits 54(1): 173-185 (2019) - [j114]Jaeeun Jang
, Jihee Lee, Kyoung-Rog Lee
, Jiwon Lee, Minseo Kim
, Yongsu Lee
, Joonsung Bae
, Hoi-Jun Yoo:
A Four-Camera VGA-Resolution Capsule Endoscope System With 80-Mb/s Body Channel Communication Transceiver and Sub-Centimeter Range Capsule Localization. IEEE J. Solid State Circuits 54(2): 538-549 (2019) - [j113]Jaehyuk Lee
, Kyoung-Rog Lee
, Unsoo Ha
, Ji-Hoon Kim
, Kwonjoon Lee
, Surin Gweon, Jaeeun Jang
, Hoi-Jun Yoo
:
A 0.8-V 82.9- $\mu$ W In-Ear BCI Controller IC With 8.8 PEF EEG Instrumentation Amplifier and Wireless BAN Transceiver. IEEE J. Solid State Circuits 54(4): 1185-1195 (2019) - [j112]Donghyeon Han
, Jinsu Lee
, Jinmook Lee
, Hoi-Jun Yoo
:
A Low-Power Deep Neural Network Online Learning Processor for Real-Time Object Tracking Application. IEEE Trans. Circuits Syst. I Regul. Pap. 66-I(5): 1794-1804 (2019) - [c233]Sungpill Choi, Kyeongryeol Bong, Donghyeon Han, Hoi-Jun Yoo:
CNNP-v2: An Energy Efficient Memory-Centric Convolutional Neural Network Processor Architecture. AICAS 2019: 38-41 - [c232]Jihee Lee, Jaeeun Jang, Jaehyuk Lee, Hoi-Jun Yoo:
A battery-less 31 µW HBC receiver with RF energy harvester for implantable devices. A-SSCC 2019: 177-180 - [c231]Jaeeun Jang, Hyunwoo Cho, Hoi-Jun Yoo:
An 802.15.6 HBC Standard Compatible Transceiver and 90 pJ/b Full-Duplex Transceiver for Body Channel Communication. BioCAS 2019: 1-4 - [c230]Jaeeun Jang, Hoi-Jun Yoo:
Analysis of Channel Characteristic for Body Channel Communication Transceiver Design. BODYNETS 2019: 374-383 - [c229]Jaeeun Jang, Joonsung Bae, Hoi-Jun Yoo:
Understanding Body Channel Communication : A review: from history to the future applications. CICC 2019: 1-8 - [c228]Hoi-Jun Yoo:
Mobile Deep Learning Processors on the Edge. CICC 2019: 1-91 - [c227]Donghyeon Han, Hoi-Jun Yoo:
Direct Feedback Alignment Based Convolutional Neural Network Training for Low-Power Online Learning Processor. ICCV Workshops 2019: 2445-2452 - [c226]Surin Gweon, Jaehyuk Lee, Kwantae Kim
, Hoi-Jun Yoo:
93.8% Current Efficiency and 0.672 ns Transient Response Reconfigurable LDO for Wireless Sensor Network Systems. ISCAS 2019: 1-5 - [c225]Dongseok Im, Donghyeon Han, Sungpill Choi, Sanghoon Kang, Hoi-Jun Yoo:
DT-CNN: Dilated and Transposed Convolution Neural Network Accelerator for Real-Time Image Segmentation on Mobile Devices. ISCAS 2019: 1-5 - [c224]Ji-Hoon Kim, Changhyeon Kim, Kwantae Kim
, Hoi-Jun Yoo:
An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile Devices. ISCAS 2019: 1-5