


Остановите войну!
for scientists:


default search action
Battista Biggio
Person information

- affiliation: University of Cagliari, Italy
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j35]Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram Shankar, Gelei Deng, Liu Yang, Xiangyu Zhang, Maura Pintor
, Wenke Lee, Yuval Elovici, Battista Biggio:
The Threat of Offensive AI to Organizations. Comput. Secur. 124: 103006 (2023) - [j34]Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Ambra Demontis
, Maura Pintor
, Battista Biggio
, Fabio Roli
:
Why adversarial reprogramming works, when it fails, and how to tell the difference. Inf. Sci. 632: 130-143 (2023) - [j33]Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor
, Ambra Demontis
, Battista Biggio
, Fabio Roli:
Stateful detection of adversarial reprogramming. Inf. Sci. 642: 119093 (2023) - [j32]Maura Pintor
, Daniele Angioni
, Angelo Sotgiu, Luca Demetrio
, Ambra Demontis
, Battista Biggio, Fabio Roli:
ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches. Pattern Recognit. 134: 109064 (2023) - [j31]Kathrin Grosse
, Lukas Bieringer
, Tarek R. Besold
, Battista Biggio
, Katharina Krombholz:
Machine Learning Security in Industry: A Quantitative Survey. IEEE Trans. Inf. Forensics Secur. 18: 1749-1762 (2023) - [c74]Dario Lazzaro
, Antonio Emanuele Cinà
, Maura Pintor
, Ambra Demontis
, Battista Biggio
, Fabio Roli
, Marcello Pelillo
:
Minimizing Energy Consumption of Deep Learning Models by Energy-Aware Training. ICIAP (2) 2023: 515-526 - [c73]Ambra Demontis, Maura Pintor, Luca Demetrio, Angelo Sotgiu, Daniele Angioni, Giorgio Piras, Srishti Gupta, Battista Biggio, Fabio Roli:
AI Security and Safety: The PRALab Research Experience. Ital-IA 2023: 324-328 - [c72]Maura Pintor, Giulia Orrù, Davide Maiorca, Ambra Demontis, Luca Demetrio, Gian Luca Marcialis, Battista Biggio, Fabio Roli:
Cybersecurity and AI: The PRALab Research Experience. Ital-IA 2023: 426-431 - [c71]Avishag Shapira, Alon Zolfi, Luca Demetrio
, Battista Biggio, Asaf Shabtai:
Phantom Sponges: Exploiting Non-Maximum Suppression to Attack Deep Object Detectors. WACV 2023: 4560-4569 - [i61]Dario Lazzaro, Antonio Emanuele Cinà, Maura Pintor, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo:
Minimizing Energy Consumption of Deep Learning Models by Energy-Aware Training. CoRR abs/2307.00368 (2023) - [i60]Biagio Montaruli, Luca Demetrio, Andrea Valenza, Luca Compagna, Davide Ariu, Luca Piras, Davide Balzarotti, Battista Biggio:
Adversarial ModSecurity: Countering Adversarial SQL Injections with Robust Machine Learning. CoRR abs/2308.04964 (2023) - [i59]Yang Zheng, Luca Demetrio, Antonio Emanuele Cinà, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Ambra Demontis, Battista Biggio, Fabio Roli:
Hardening RGB-D Object Recognition Systems against Adversarial Patch Attacks. CoRR abs/2309.07106 (2023) - [i58]Emanuele Ledda, Daniele Angioni, Giorgio Piras, Giorgio Fumera, Battista Biggio, Fabio Roli:
Adversarial Attacks Against Uncertainty Quantification. CoRR abs/2309.10586 (2023) - 2022
- [j30]Kathrin Grosse
, Taesung Lee, Battista Biggio
, Youngja Park, Michael Backes, Ian M. Molloy:
Backdoor smoothing: Demystifying backdoor attacks on deep neural networks. Comput. Secur. 120: 102814 (2022) - [j29]Moshe Kravchik, Luca Demetrio
, Battista Biggio, Asaf Shabtai:
Practical Evaluation of Poisoning Attacks on Online Anomaly Detectors in Industrial Control Systems. Comput. Secur. 122: 102901 (2022) - [j28]Luca Demetrio
, Battista Biggio, Fabio Roli:
Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware. IEEE Secur. Priv. 20(5): 77-85 (2022) - [j27]Francesco Crecchi, Marco Melis
, Angelo Sotgiu
, Davide Bacciu, Battista Biggio:
FADER: Fast adversarial example rejection. Neurocomputing 470: 257-268 (2022) - [j26]Luca Oneto
, Nicolò Navarin
, Battista Biggio, Federico Errica
, Alessio Micheli
, Franco Scarselli
, Monica Bianchini
, Luca Demetrio
, Pietro Bongini
, Armando Tacchella, Alessandro Sperduti:
Towards learning trustworthily, automatically, and with guarantees on graphs: An overview. Neurocomputing 493: 217-243 (2022) - [j25]Marco Melis
, Michele Scalas, Ambra Demontis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, Fabio Roli
:
Do gradient-based explanations tell anything about adversarial robustness to android malware? Int. J. Mach. Learn. Cybern. 13(1): 217-232 (2022) - [j24]Stefano Melacci
, Gabriele Ciravegna
, Angelo Sotgiu
, Ambra Demontis
, Battista Biggio
, Marco Gori, Fabio Roli
:
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9944-9959 (2022) - [j23]Maura Pintor
, Luca Demetrio
, Angelo Sotgiu
, Marco Melis
, Ambra Demontis
, Battista Biggio
:
secml: Secure and explainable machine learning in Python. SoftwareX 18: 101095 (2022) - [c70]Angelo Sotgiu, Maura Pintor
, Battista Biggio:
Explainability-based Debugging of Machine Learning for Vulnerability Discovery. ARES 2022: 113:1-113:8 - [c69]Bernhard Alois Moser, Michal Lewandowski, Somayeh Kargaran, Werner Zellinger, Battista Biggio, Christoph Koutschan
:
Tessellation-Filtering ReLU Neural Networks. IJCAI 2022: 3335-3341 - [c68]Giorgio Piras, Maura Pintor, Luca Demetrio, Battista Biggio:
Explaining Machine Learning DGA Detectors from DNS Traffic Data. ITASEC 2022: 150-168 - [c67]Daniele Angioni, Luca Demetrio, Maura Pintor, Battista Biggio:
Robust Machine Learning for Malware Detection over Time. ITASEC 2022: 169-180 - [c66]Maura Pintor, Luca Demetrio, Angelo Sotgiu, Ambra Demontis, Nicholas Carlini, Battista Biggio, Fabio Roli:
Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples. NeurIPS 2022 - [c65]Lukas Bieringer, Kathrin Grosse, Michael Backes, Battista Biggio, Katharina Krombholz:
Industrial practitioners' mental models of adversarial machine learning. SOUPS @ USENIX Security Symposium 2022: 97-116 - [i57]Maura Pintor, Daniele Angioni, Angelo Sotgiu, Luca Demetrio, Ambra Demontis, Battista Biggio, Fabio Roli:
ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches. CoRR abs/2203.04412 (2022) - [i56]Antonio Emanuele Cinà
, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo:
Energy-Latency Attacks via Sponge Poisoning. CoRR abs/2203.08147 (2022) - [i55]Antonio Emanuele Cinà
, Kathrin Grosse, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo:
Machine Learning Security against Data Poisoning: Are We There Yet? CoRR abs/2204.05986 (2022) - [i54]Antonio Emanuele Cinà
, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger, Bernhard Alois Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, Fabio Roli:
Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning. CoRR abs/2205.01992 (2022) - [i53]Avishag Shapira, Alon Zolfi, Luca Demetrio, Battista Biggio, Asaf Shabtai:
Denial-of-Service Attack on Object Detection Model Using Universal Adversarial Perturbation. CoRR abs/2205.13618 (2022) - [i52]Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, Fabio Roli:
Support Vector Machines under Adversarial Label Contamination. CoRR abs/2206.00352 (2022) - [i51]Kathrin Grosse, Lukas Bieringer, Tarek Richard Besold, Battista Biggio, Katharina Krombholz:
"Why do so?" - A Practical Perspective on Machine Learning Security. CoRR abs/2207.05164 (2022) - [i50]Luca Demetrio
, Battista Biggio, Fabio Roli:
Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware. CoRR abs/2207.05548 (2022) - [i49]Daniele Angioni
, Luca Demetrio
, Maura Pintor, Battista Biggio:
Robust Machine Learning for Malware Detection over Time. CoRR abs/2208.04838 (2022) - [i48]Giorgio Piras, Maura Pintor, Luca Demetrio
, Battista Biggio:
Explaining Machine Learning DGA Detectors from DNS Traffic Data. CoRR abs/2208.05285 (2022) - [i47]Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, Battista Biggio, Fabio Roli:
Stateful Detection of Adversarial Reprogramming. CoRR abs/2211.02885 (2022) - [i46]Ambra Demontis, Maura Pintor, Luca Demetrio
, Kathrin Grosse, Hsiao-Ying Lin, Chengfang Fang, Battista Biggio, Fabio Roli:
A Survey on Reinforcement Learning Security with Application to Autonomous Driving. CoRR abs/2212.06123 (2022) - [i45]Battista Biggio, Nicholas Carlini, Pavel Laskov, Konrad Rieck, Antonio Emanuele Cinà:
Security of Machine Learning (Dagstuhl Seminar 22281). Dagstuhl Reports 12(7): 41-61 (2022) - 2021
- [j22]Hsiao-Ying Lin
, Battista Biggio:
Adversarial Machine Learning: Attacks From Laboratories to the Real World. Computer 54(5): 56-60 (2021) - [j21]Paul Temple
, Gilles Perrouin
, Mathieu Acher, Battista Biggio, Jean-Marc Jézéquel, Fabio Roli
:
Empirical assessment of generating adversarial configurations for software product lines. Empir. Softw. Eng. 26(1): 6 (2021) - [j20]Luca Demetrio
, Battista Biggio
, Giovanni Lagorio, Fabio Roli
, Alessandro Armando:
Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware. IEEE Trans. Inf. Forensics Secur. 16: 3469-3478 (2021) - [j19]Luca Demetrio
, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro Armando, Fabio Roli
:
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection. ACM Trans. Priv. Secur. 24(4): 27:1-27:31 (2021) - [c64]Georg Buchgeher, Gerald Czech, Adriano Souza Ribeiro, Werner Kloihofer, Paolo Meloni, Paola Busia, Gianfranco Deriu, Maura Pintor
, Battista Biggio, Cristina Chesta, Luca Rinelli, David Solans, Manuel Portela:
Task-Specific Automation in Deep Learning Processes. DEXA Workshops 2021: 159-169 - [c63]Luca Oneto
, Nicolò Navarin
, Battista Biggio, Federico Errica
, Alessio Micheli
, Franco Scarselli, Monica Bianchini, Alessandro Sperduti:
Complex Data: Learning Trustworthily, Automatically, and with Guarantees. ESANN 2021 - [c62]Maura Pintor
, Luca Demetrio
, Giovanni Manca, Battista Biggio, Fabio Roli:
Slope: A First-order Approach for Measuring Gradient Obfuscation. ESANN 2021 - [c61]Antonio Emanuele Cinà
, Sebastiano Vascon, Ambra Demontis
, Battista Biggio, Fabio Roli
, Marcello Pelillo:
The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers? IJCNN 2021: 1-8 - [c60]Maura Pintor, Fabio Roli, Wieland Brendel, Battista Biggio:
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints. NeurIPS 2021: 20052-20062 - [c59]Moshe Kravchik, Battista Biggio, Asaf Shabtai:
Poisoning attacks on cyber attack detectors for industrial control systems. SAC 2021: 116-125 - [e6]Andrea Torsello, Luca Rossi, Marcello Pelillo
, Battista Biggio, Antonio Robles-Kelly:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshops, S+SSPR 2020, Padua, Italy, January 21-22, 2021, Proceedings. Lecture Notes in Computer Science 12644, Springer 2021, ISBN 978-3-030-73972-0 [contents] - [i44]Maura Pintor, Fabio Roli, Wieland Brendel, Battista Biggio:
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints. CoRR abs/2102.12827 (2021) - [i43]Antonio Emanuele Cinà, Sebastiano Vascon, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo:
The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers? CoRR abs/2103.12399 (2021) - [i42]Luca Demetrio, Battista Biggio:
secml-malware: A Python Library for Adversarial Robustness Evaluation of Windows Malware Classifiers. CoRR abs/2104.12848 (2021) - [i41]Antonio Emanuele Cinà, Kathrin Grosse, Sebastiano Vascon, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo:
Backdoor Learning Curves: Explaining Backdoor Poisoning Beyond Influence Functions. CoRR abs/2106.07214 (2021) - [i40]Maura Pintor, Luca Demetrio, Angelo Sotgiu, Giovanni Manca, Ambra Demontis, Nicholas Carlini, Battista Biggio, Fabio Roli:
Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples. CoRR abs/2106.09947 (2021) - [i39]Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram Shankar, Gelei Deng, Liu Yang, Xiangyu Zhang, Wenke Lee, Yuval Elovici, Battista Biggio:
The Threat of Offensive AI to Organizations. CoRR abs/2106.15764 (2021) - [i38]Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Ambra Demontis, Maura Pintor, Battista Biggio, Fabio Roli:
Why Adversarial Reprogramming Works, When It Fails, and How to Tell the Difference. CoRR abs/2108.11673 (2021) - 2020
- [j18]Davide Maiorca
, Ambra Demontis
, Battista Biggio
, Fabio Roli
, Giorgio Giacinto:
Adversarial Detection of Flash Malware: Limitations and Open Issues. Comput. Secur. 96: 101901 (2020) - [j17]Angelo Sotgiu
, Ambra Demontis
, Marco Melis
, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, Fabio Roli
:
Deep neural rejection against adversarial examples. EURASIP J. Inf. Secur. 2020: 5 (2020) - [c58]David Solans
, Battista Biggio
, Carlos Castillo
:
Poisoning Attacks on Algorithmic Fairness. ECML/PKDD (1) 2020: 162-177 - [i37]Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, Alessandro Armando:
Efficient Black-box Optimization of Adversarial Windows Malware with Constrained Manipulations. CoRR abs/2003.13526 (2020) - [i36]David Solans, Battista Biggio, Carlos Castillo:
Poisoning Attacks on Algorithmic Fairness. CoRR abs/2004.07401 (2020) - [i35]Marco Melis, Michele Scalas, Ambra Demontis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, Fabio Roli:
Do Gradient-based Explanations Tell Anything About Adversarial Robustness to Android Malware? CoRR abs/2005.01452 (2020) - [i34]Fei Zhang, Patrick P. K. Chan, Battista Biggio, Daniel S. Yeung, Fabio Roli:
Adversarial Feature Selection against Evasion Attacks. CoRR abs/2005.12154 (2020) - [i33]Stefano Melacci, Gabriele Ciravegna, Angelo Sotgiu, Ambra Demontis, Battista Biggio, Marco Gori, Fabio Roli:
Can Domain Knowledge Alleviate Adversarial Attacks in Multi-Label Classifiers? CoRR abs/2006.03833 (2020) - [i32]Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro Armando, Fabio Roli:
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection. CoRR abs/2008.07125 (2020) - [i31]Francesco Crecchi, Marco Melis, Angelo Sotgiu, Davide Bacciu, Battista Biggio:
FADER: Fast Adversarial Example Rejection. CoRR abs/2010.09119 (2020) - [i30]Moshe Kravchik, Battista Biggio, Asaf Shabtai:
Poisoning Attacks on Cyber Attack Detectors for Industrial Control Systems. CoRR abs/2012.15740 (2020)
2010 – 2019
- 2019
- [j16]Davide Maiorca
, Battista Biggio, Giorgio Giacinto:
Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks. ACM Comput. Surv. 52(4): 78:1-78:36 (2019) - [j15]Davide Maiorca
, Battista Biggio
:
Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware. IEEE Secur. Priv. 17(1): 63-71 (2019) - [j14]Ambra Demontis
, Marco Melis
, Battista Biggio
, Davide Maiorca
, Daniel Arp, Konrad Rieck, Igino Corona
, Giorgio Giacinto
, Fabio Roli
:
Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection. IEEE Trans. Dependable Secur. Comput. 16(4): 711-724 (2019) - [c57]Raphael Labaca Castro, Battista Biggio, Gabi Dreo Rodosek:
Poster: Attacking Malware Classifiers by Crafting Gradient-Attacks that Preserve Functionality. CCS 2019: 2565-2567 - [c56]Sadia Afroz, Battista Biggio, Nicholas Carlini, Yuval Elovici, Asaf Shabtai:
AISec'19: 12th ACM Workshop on Artificial Intelligence and Security. CCS 2019: 2707-2708 - [c55]Paolo Meloni, Daniela Loi, Paola Busia, Gianfranco Deriu, Andy D. Pimentel
, Dolly Sapra
, Todor P. Stefanov
, Svetlana Minakova, Francesco Conti, Luca Benini
, Maura Pintor
, Battista Biggio
, Bernhard Moser
, Natalia Shepeleva, Nikos Fragoulis, Ilias Theodorakopoulos
, Michael Masin, Francesca Palumbo
:
Optimization and deployment of CNNs at the edge: the ALOHA experience. CF 2019: 326-332 - [c54]Davide Bacciu, Battista Biggio, Paulo Lisboa, José D. Martín, Luca Oneto, Alfredo Vellido:
Societal Issues in Machine Learning: When Learning from Data is Not Enough. ESANN 2019 - [c53]Francesco Crecchi, Davide Bacciu, Battista Biggio:
Detecting Black-box Adversarial Examples through Nonlinear Dimensionality Reduction. ESANN 2019 - [c52]Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, Alessandro Armando:
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries. ITASEC 2019 - [c51]Paul Temple
, Mathieu Acher, Gilles Perrouin
, Battista Biggio, Jean-Marc Jézéquel
, Fabio Roli
:
Towards quality assurance of software product lines with adversarial configurations. SPLC (A) 2019: 38:1-38:12 - [c50]Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, Fabio Roli:
Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks. USENIX Security Symposium 2019: 321-338 - [e5]Lorenzo Cavallaro, Johannes Kinder, Sadia Afroz, Battista Biggio, Nicholas Carlini, Yuval Elovici, Asaf Shabtai:
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2019, London, UK, November 15, 2019. ACM 2019, ISBN 978-1-4503-6833-9 [contents] - [i29]Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, Alessandro Armando:
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries. CoRR abs/1901.03583 (2019) - [i28]Francesco Crecchi, Davide Bacciu, Battista Biggio:
Detecting Adversarial Examples through Nonlinear Dimensionality Reduction. CoRR abs/1904.13094 (2019) - [i27]Paul Temple, Mathieu Acher, Gilles Perrouin, Battista Biggio, Jean-Marc Jézéquel, Fabio Roli:
Towards Quality Assurance of Software Product Lines with Adversarial Configurations. CoRR abs/1909.07283 (2019) - [i26]Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, Fabio Roli:
Deep Neural Rejection against Adversarial Examples. CoRR abs/1910.00470 (2019) - [i25]Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, Battista Biggio:
secml: A Python Library for Secure and Explainable Machine Learning. CoRR abs/1912.10013 (2019) - 2018
- [j13]Battista Biggio
, Fabio Roli
:
Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 84: 317-331 (2018) - [c49]Sadia Afroz, Battista Biggio
, Yuval Elovici, David Freeman, Asaf Shabtai:
11th International Workshop on Artificial Intelligence and Security (AISec 2018). CCS 2018: 2166-2167 - [c48]Battista Biggio:
Session details: AI Security / Adversarial Machine Learning. AISec@CCS 2018 - [c47]Battista Biggio
, Fabio Roli
:
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning. CCS 2018: 2154-2156 - [c46]Paolo Meloni
, Daniela Loi
, Gianfranco Deriu, Andy D. Pimentel
, Dolly Sapra
, Bernhard Moser
, Natalia Shepeleva, Francesco Conti, Luca Benini
, Oscar Ripolles
, David Solans, Maura Pintor
, Battista Biggio
, Todor P. Stefanov
, Svetlana Minakova, Nikolaos Fragoulis, Ilias Theodorakopoulos
, Michael Masin, Francesca Palumbo
:
ALOHA: an architectural-aware framework for deep learning at the edge. INTESA@ESWEEK 2018: 19-26 - [c45]Marco Melis
, Davide Maiorca
, Battista Biggio
, Giorgio Giacinto
, Fabio Roli
:
Explaining Black-box Android Malware Detection. EUSIPCO 2018: 524-528 - [c44]Bojan Kolosnjaji, Ambra Demontis
, Battista Biggio
, Davide Maiorca
, Giorgio Giacinto
, Claudia Eckert, Fabio Roli
:
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables. EUSIPCO 2018: 533-537 - [c43]Paolo Meloni, Daniela Loi, Gianfranco Deriu, Andy D. Pimentel
, Dolly Sapra, Maura Pintor
, Battista Biggio
, Oscar Ripolles
, David Solans, Francesco Conti, Luca Benini
, Todor P. Stefanov
, Svetlana Minakova, Bernhard Moser
, Natalia Shepeleva, Michael Masin, Francesca Palumbo
, Nikos Fragoulis, Ilias Theodorakopoulos
:
Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project. ICM 2018: 52-55 - [c42]Matthew Jagielski, Alina Oprea, Battista Biggio
, Chang Liu, Cristina Nita-Rotaru, Bo Li:
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning. IEEE Symposium on Security and Privacy 2018: 19-35 - [e4]Sadia Afroz, Battista Biggio, Yuval Elovici, David Freeman, Asaf Shabtai:
Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security, CCS 2018, Toronto, ON, Canada, October 19, 2018. ACM 2018, ISBN 978-1-4503-6004-3 [contents] - [e3]Xiao Bai, Edwin R. Hancock
, Tin Kam Ho, Richard C. Wilson, Battista Biggio, Antonio Robles-Kelly:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2018, Beijing, China, August 17-19, 2018, Proceedings. Lecture Notes in Computer Science 11004, Springer 2018, ISBN 978-3-319-97784-3 [contents] - [i24]Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, Fabio Roli:
Explaining Black-box Android Malware Detection. CoRR abs/1803.03544 (2018) - [i23]Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, Claudia Eckert, Fabio Roli:
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables. CoRR abs/1803.04173 (2018) - [i22]Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, Bo Li:
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning. CoRR abs/1804.00308 (2018) - [i21]Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, Fabio Roli:
Is feature selection secure against training data poisoning? CoRR abs/1804.07933 (2018) - [i20]Paul Temple, Mathieu Acher, Battista Biggio, Jean-Marc Jézéquel, Fabio Roli:
Towards Adversarial Configurations for Software Product Lines. CoRR abs/1805.12021 (2018) - [i19]Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, Fabio Roli:
On the Intriguing Connections of Regularization, Input Gradients and Transferability of Evasion and Poisoning Attacks. CoRR abs/1809.02861 (2018) - [i18]Davide Maiorca, Battista Biggio, Giorgio Giacinto:
Towards Robust Detection of Adversarial Infection Vectors: Lessons Learned in PDF Malware. CoRR abs/1811.00830 (2018) - [i17]Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello Pelillo, Fabio Roli:
Is Data Clustering in Adversarial Settings Secure? CoRR abs/1811.09982 (2018) - [i16]Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona, Giorgio Giacinto, Fabio Roli:
Poisoning Behavioral Malware Clustering. CoRR abs/1811.09985 (2018) - 2017
- [j12]Battista Biggio
, Giorgio Fumera, Gian Luca Marcialis, Fabio Roli:
Statistical Meta-Analysis of Presentation Attacks for Secure Multibiometric Systems. IEEE Trans. Pattern Anal. Mach. Intell. 39(3): 561-575 (2017) - [j11]Samuel Rota Bulò, Battista Biggio
, Ignazio Pillai, Marcello Pelillo, Fabio Roli
:
Randomized Prediction Games for Adversarial Machine Learning. IEEE Trans. Neural Networks Learn. Syst. 28(11): 2466-2478 (2017) - [c41]Paolo Piredda, Davide Ariu
, Battista Biggio
, Igino Corona
, Luca Piras, Giorgio Giacinto
, Fabio Roli
:
Deepsquatting: Learning-Based Typosquatting Detection at Deeper Domain Levels. AI*IA 2017: 347-358 - [c40]