default search action
Marina M.-C. Höhne
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j7]Srishti Gautam, Ahcene Boubekki, Marina M.-C. Höhne, Michael Kampffmeyer:
Prototypical Self-Explainable Models Without Re-training. Trans. Mach. Learn. Res. 2024 (2024) - [c11]Shanghua Liu, Anna Hedström, Deepak Hanike Basavegowda, Cornelia Weltzien, Marina M.-C. Höhne:
Explainable AI in grassland monitoring: Enhancing model performance and domain adaptability. GIL 2024: 143-154 - [c10]Deepak Hanike Basavegowda, Marina M.-C. Höhne, Cornelia Weltzien:
Deep Learning-based UAV-assisted grassland monitoring to facilitate Eco-scheme 5 realization. GIL 2024: 197-202 - [c9]Xiaoyan Yu, Jannik Franzen, Wojciech Samek, Marina M.-C. Höhne, Dagmar Kainmueller:
Model Guidance via Explanations Turns Image Classifiers into Segmentation Models. xAI (2) 2024: 113-129 - [c8]Anna Hedström, Leander Weber, Sebastian Lapuschkin, Marina M.-C. Höhne:
A Fresh Look at Sanity Checks for Saliency Maps. xAI (1) 2024: 403-420 - [i23]Dilyara Bareeva, Marina M.-C. Höhne, Alexander Warnecke, Lukas Pirch, Klaus-Robert Müller, Konrad Rieck, Kirill Bykov:
Manipulating Feature Visualizations with Gradient Slingshots. CoRR abs/2401.06122 (2024) - [i22]Anna Hedström, Leander Weber, Sebastian Lapuschkin, Marina M.-C. Höhne:
Sanity Checks Revisited: An Exploration to Repair the Model Parameter Randomisation Test. CoRR abs/2401.06465 (2024) - [i21]Anna Hedström, Leander Weber, Sebastian Lapuschkin, Marina M.-C. Höhne:
A Fresh Look at Sanity Checks for Saliency Maps. CoRR abs/2405.02383 (2024) - [i20]Laura Kopf, Philine Lou Bommer, Anna Hedström, Sebastian Lapuschkin, Marina M.-C. Höhne, Kirill Bykov:
CoSy: Evaluating Textual Explanations of Neurons. CoRR abs/2405.20331 (2024) - [i19]Xiaoyan Yu, Jannik Franzen, Wojciech Samek, Marina M.-C. Höhne, Dagmar Kainmueller:
Model Guidance via Explanations Turns Image Classifiers into Segmentation Models. CoRR abs/2407.03009 (2024) - 2023
- [j6]Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne:
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond. J. Mach. Learn. Res. 24: 34:1-34:11 (2023) - [j5]Srishti Gautam, Marina M.-C. Höhne, Stine Hansen, Robert Jenssen, Michael Kampffmeyer:
This looks More Like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation. Pattern Recognit. 136: 109172 (2023) - [j4]Kirill Bykov, Mayukh Deb, Dennis Grinwald, Klaus-Robert Müller, Marina M.-C. Höhne:
DORA: Exploring Outlier Representations in Deep Neural Networks. Trans. Mach. Learn. Res. 2023 (2023) - [j3]Dennis Grinwald, Kirill Bykov, Shinichi Nakajima, Marina M.-C. Höhne:
Visualizing the Diversity of Representations Learned by Bayesian Neural Networks. Trans. Mach. Learn. Res. 2023 (2023) - [j2]Anna Hedström, Philine Lou Bommer, Kristoffer Knutsen Wickstrøm, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne:
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus. Trans. Mach. Learn. Res. 2023 (2023) - [c7]Kirill Bykov, Klaus-Robert Müller, Marina M.-C. Höhne:
Mark My Words: Dangers of Watermarked Images in ImageNet. ECAI Workshops (1) 2023: 426-434 - [c6]Pia Hanfeld, Khaled Wahba, Marina M.-C. Höhne, Michael Bussmann, Wolfgang Hönig:
Kidnapping Deep Learning-based Multirotors using Optimized Flying Adversarial Patches. MRS 2023: 78-84 - [c5]Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina M.-C. Höhne:
Labeling Neural Representations with Inverse Recognition. NeurIPS 2023 - [c4]Kirill Bykov, Laura Kopf, Marina M.-C. Höhne:
Finding Spurious Correlations with Function-Semantic Contrast Analysis. xAI (2) 2023: 549-572 - [i18]Anna Hedström, Philine Lou Bommer, Kristoffer K. Wickstrøm, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne:
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus. CoRR abs/2302.07265 (2023) - [i17]Philine Lou Bommer, Marlene Kretschmer, Anna Hedström, Dilyara Bareeva, Marina M.-C. Höhne:
Finding the right XAI method - A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science. CoRR abs/2303.00652 (2023) - [i16]Kirill Bykov, Klaus-Robert Müller, Marina M.-C. Höhne:
Mark My Words: Dangers of Watermarked Images in ImageNet. CoRR abs/2303.05498 (2023) - [i15]Pia Hanfeld, Marina M.-C. Höhne, Michael Bussmann, Wolfgang Hönig:
Flying Adversarial Patches: Manipulating the Behavior of Deep Learning-based Autonomous Multirotors. CoRR abs/2305.12859 (2023) - [i14]Pia Hanfeld, Khaled Wahba, Marina M.-C. Höhne, Michael Bussmann, Wolfgang Hönig:
Kidnapping Deep Learning-based Multirotors using Optimized Flying Adversarial Patches. CoRR abs/2308.00344 (2023) - [i13]Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina M.-C. Höhne:
Labeling Neural Representations with Inverse Recognition. CoRR abs/2311.13594 (2023) - [i12]Srishti Gautam, Ahcene Boubekki, Marina M.-C. Höhne, Michael C. Kampffmeyer:
Prototypical Self-Explainable Models Without Re-training. CoRR abs/2312.07822 (2023) - [i11]Shanghua Liu, Anna Hedström, Deepak Hanike Basavegowda, Cornelia Weltzien, Marina M.-C. Höhne:
Explainable AI in Grassland Monitoring: Enhancing Model Performance and Domain Adaptability. CoRR abs/2312.08408 (2023) - 2022
- [c3]Kirill Bykov, Anna Hedström, Shinichi Nakajima, Marina M.-C. Höhne:
NoiseGrad - Enhancing Explanations by Introducing Stochasticity to Model Weights. AAAI 2022: 6132-6140 - [c2]Srishti Gautam, Marina M.-C. Höhne, Stine Hansen, Robert Jenssen, Michael Kampffmeyer:
Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation. ISBI 2022: 1-5 - [c1]Srishti Gautam, Ahcène Boubekki, Stine Hansen, Suaiba Amina Salahuddin, Robert Jenssen, Marina M.-C. Höhne, Michael Kampffmeyer:
ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. NeurIPS 2022 - [i10]Srishti Gautam, Marina M.-C. Höhne, Stine Hansen, Robert Jenssen, Michael Kampffmeyer:
Demonstrating The Risk of Imbalanced Datasets in Chest X-ray Image-based Diagnostics by Prototypical Relevance Propagation. CoRR abs/2201.03559 (2022) - [i9]Dennis Grinwald, Kirill Bykov, Shinichi Nakajima, Marina M.-C. Höhne:
Visualizing the diversity of representations learned by Bayesian neural networks. CoRR abs/2201.10859 (2022) - [i8]Anna Hedström, Leander Weber, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne:
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations. CoRR abs/2202.06861 (2022) - [i7]Kirill Bykov, Mayukh Deb, Dennis Grinwald, Klaus-Robert Müller, Marina M.-C. Höhne:
DORA: Exploring outlier representations in Deep Neural Networks. CoRR abs/2206.04530 (2022) - [i6]Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Amina Salahuddin, Robert Jenssen, Marina M.-C. Höhne, Michael Kampffmeyer:
ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. CoRR abs/2210.08151 (2022) - 2021
- [j1]Marina Marie-Claire Höhne:
Nachvollziehbare Künstliche Intelligenz: Methoden, Chancen und Risiken. Datenschutz und Datensicherheit 45(7): 453-456 (2021) - [i5]Kirill Bykov, Anna Hedström, Shinichi Nakajima, Marina M.-C. Höhne:
NoiseGrad: enhancing explanations by introducing stochasticity to model weights. CoRR abs/2106.10185 (2021) - [i4]Kirill Bykov, Marina M.-C. Höhne, Adelaida Creosteanu, Klaus-Robert Müller, Frederick Klauschen, Shinichi Nakajima, Marius Kloft:
Explaining Bayesian Neural Networks. CoRR abs/2108.10346 (2021) - [i3]Srishti Gautam, Marina M.-C. Höhne, Stine Hansen, Robert Jenssen, Michael Kampffmeyer:
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation. CoRR abs/2108.12204 (2021) - [i2]Yamen Ali, Aiham Taleb, Marina M.-C. Höhne, Christoph Lippert:
Self-Supervised Learning for 3D Medical Image Analysis using 3D SimCLR and Monte Carlo Dropout. CoRR abs/2109.14288 (2021) - 2020
- [i1]Kirill Bykov, Marina M.-C. Höhne, Klaus-Robert Müller, Shinichi Nakajima, Marius Kloft:
How Much Can I Trust You? - Quantifying Uncertainties in Explaining Neural Networks. CoRR abs/2006.09000 (2020)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-23 21:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint