default search action
Jörg Hoffmann 0001
Person information
- affiliation (since 2012): Saarland University, Department of Computer Science, Saarbrücken, Germany
- affiliation (since 2009): INRIA, Nancy, France
- affiliation (since 2008): SAP Research Karlsruhe, Germany
- affiliation (former): University of Innsbruck, Semantic Technology Institute, Austria
- affiliation (2006): Cornell University, Ithaca, NY, USA
- affiliation (2004 - 2006): Max Planck Institute for Computer Science, Saarbrücken, Germany
- affiliation (PhD 2002): University of Freiburg, Department of Computer Science, Germany
Other persons with the same name
- Jörg Hoffmann — disambiguation page
- Jörg Hoffmann 0002 — Bauhaus University Weimar, Faculty of Media, Germany
- Jörg Hoffmann 0003 — Kaiserslautern University of Technology, Germany
- Jörg Hoffmann 0004 — German Federal Research Institute for Agriculture, Braunschweig, Germany
- Jörg Hoffmann 0005 — University of Bonn, Germany
- Jörg Hoffmann 0006 — RWTH Aachen University, Germany
- Jörg Hoffmann 0007 — Julius Kühn-Institut - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c164]Chaahat Jain, Lorenzo Cascioli, Laurens Devos, Marcel Vinzent, Marcel Steinmetz, Jesse Davis, Jörg Hoffmann:
Safety Verification of Tree-Ensemble Policies via Predicate Abstraction. ECAI 2024: 1189-1197 - [c163]Jayanta Mandi, Marco Foschini, Daniel Höller, Sylvie Thiébaux, Jörg Hoffmann, Tias Guns:
Decision-Focused Learning to Predict Action Costs for Planning. ECAI 2024: 4060-4067 - [c162]Rebecca Eifler, Daniel Fiser, Aleena Siji, Jörg Hoffmann:
Iterative Oversubscription Planning with Goal-Conflict Explanations: Scaling Up Through Policy-Guidance Approximation. ECAI 2024: 4092-4099 - [c161]Jan Eisenhut, Xandra Schuler, Daniel Fiser, Daniel Höller, Maria Christakis, Jörg Hoffmann:
New Fuzzing Biases for Action Policy Testing. ICAPS 2024: 162-167 - [c160]Marcel Vinzent, Jörg Hoffmann:
Neural Action Policy Safety Verification: Applicablity Filtering. ICAPS 2024: 607-612 - [c159]Mingyu Hao, Felipe W. Trevizan, Sylvie Thiébaux, Patrick Ferber, Jörg Hoffmann:
Guiding GBFS through Learned Pairwise Rankings. IJCAI 2024: 6724-6732 - [i23]Jayanta Mandi, Marco Foschini, Daniel Höller, Sylvie Thiébaux, Jörg Hoffmann, Tias Guns:
Decision-Focused Learning to Predict Action Costs for Planning. CoRR abs/2408.06876 (2024) - 2023
- [j40]Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Marcel Steinmetz:
Analyzing neural network behavior through deep statistical model checking. Int. J. Softw. Tools Technol. Transf. 25(3): 407-426 (2023) - [j39]Timo P. Gros, Joschka Groß, Daniel Höller, Jörg Hoffmann, Michaela Klauck, Hendrik Meerkamp, Nicola J. Müller, Lukas Schaller, Verena Wolf:
DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning - Extended Version. ACM Trans. Model. Comput. Simul. 33(4): 17:1-17:28 (2023) - [c158]Marcel Vinzent, Siddhant Sharma, Jörg Hoffmann:
Neural Policy Safety Verification via Predicate Abstraction: CEGAR. AAAI 2023: 15188-15196 - [c157]Jan Eisenhut, Álvaro Torralba, Maria Christakis, Jörg Hoffmann:
Automatic Metamorphic Test Oracles for Action-Policy Testing. ICAPS 2023: 109-117 - [c156]Philipp Sauer, Marcel Steinmetz, Robert Künnemann, Jörg Hoffmann:
Lifted Stackelberg Planning. ICAPS 2023: 370-374 - [c155]Julia Wichlacz, Daniel Höller, Daniel Fiser, Jörg Hoffmann:
A Landmark-Cut Heuristic for Lifted Optimal Planning. ECAI 2023: 2623-2630 - [c154]Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla, Valentin Wüstholz:
Specifying and Testing k-Safety Properties for Machine-Learning Models. IJCAI 2023: 4748-4757 - 2022
- [j38]Maximilian Fickert, Jörg Hoffmann:
Online Relaxation Refinement for Satisficing Planning: On Partial Delete Relaxation, Complete Hill-Climbing, and Novelty Pruning. J. Artif. Intell. Res. 73: 67-115 (2022) - [c153]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel, Marcel Steinmetz:
Expressivity of Planning with Horn Description Logic Ontologies. AAAI 2022: 5503-5511 - [c152]Daniel Fiser, Álvaro Torralba, Jörg Hoffmann:
Operator-Potential Heuristics for Symbolic Search. AAAI 2022: 9750-9757 - [c151]Marcel Steinmetz, Jörg Hoffmann, Alisa Kovtunova, Stefan Borgwardt:
Classical Planning with Avoid Conditions. AAAI 2022: 9944-9952 - [c150]Martim Brandao, Amanda Jane Coles, Andrew Coles, Jörg Hoffmann:
Merge and Shrink Abstractions for Temporal Planning. ICAPS 2022: 16-25 - [c149]Daniel Fiser, Álvaro Torralba, Jörg Hoffmann:
Operator-Potentials in Symbolic Search: From Forward to Bi-directional Search. ICAPS 2022: 80-89 - [c148]Thorsten Klößner, Marcel Steinmetz, Álvaro Torralba, Jörg Hoffmann:
Pattern Selection Strategies for Pattern Databases in Probabilistic Planning. ICAPS 2022: 184-192 - [c147]Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe Heim, Daniel Höller, Xandra Schuler, Valentin Wüstholz, Maria Christakis, Jörg Hoffmann:
Debugging a Policy: Automatic Action-Policy Testing in AI Planning. ICAPS 2022: 353-361 - [c146]Marcel Vinzent, Marcel Steinmetz, Jörg Hoffmann:
Neural Network Action Policy Verification via Predicate Abstraction. ICAPS 2022: 371-379 - [c145]Patrick Ferber, Florian Geißer, Felipe W. Trevizan, Malte Helmert, Jörg Hoffmann:
Neural Network Heuristic Functions for Classical Planning: Bootstrapping and Comparison to Other Methods. ICAPS 2022: 583-587 - [c144]Rebecca Eifler, Martim Brandao, Amanda Jane Coles, Jeremy Frank, Jörg Hoffmann:
Evaluating Plan-Property Dependencies: A Web-Based Platform and User Study. ICAPS 2022: 687-691 - [c143]Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A. Köhl, Verena Wolf:
MoGym: Using Formal Models for Training and Verifying Decision-making Agents. CAV (2) 2022: 430-443 - [c142]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel, Marcel Steinmetz:
Expressivity of Planning with Horn Description Logic Ontologies (Extended Abstract). Description Logics 2022 - [c141]Rebecca Eifler, Jeremy Frank, Jörg Hoffmann:
Explaining Soft-Goal Conflicts through Constraint Relaxations. IJCAI 2022: 4621-4627 - [c140]Julia Wichlacz, Daniel Höller, Jörg Hoffmann:
Landmark Heuristics for Lifted Classical Planning. IJCAI 2022: 4665-4671 - [c139]Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, Maria Christakis:
Metamorphic relations via relaxations: an approach to obtain oracles for action-policy testing. ISSTA 2022: 52-63 - [c138]David Groß, Michaela Klauck, Timo P. Gros, Marcel Steinmetz, Jörg Hoffmann, Stefan Gumhold:
Glyph-Based Visual Analysis of Q-Leaning Based Action Policy Ensembles on Racetrack. IV 2022: 1-10 - [c137]Daniel Heller, Patrick Ferber, Julian Bitterwolf, Matthias Hein, Jörg Hoffmann:
Neural Network Heuristic Functions: Taking Confidence into Account. SOCS 2022: 223-228 - [d6]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel:
Supplementary material to the paper "Expressivity of Planning with Horn Description Logic Ontologies". Zenodo, 2022 - [d5]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel:
Supplementary material to the paper "Expressivity of Planning with Horn Description Logic Ontologies". Zenodo, 2022 - [d4]Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A. Köhl, Verena Wolf:
Artifact for the Tool Paper: MoGym: Using Formal Models for Training and Verifying Decision-making Agents. Zenodo, 2022 - [d3]Jendrik Seipp, Álvaro Torralba, Jörg Hoffmann:
PDDL Generators. Zenodo, 2022 - [i22]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Markus Krötzsch, Bernhard Nebel, Marcel Steinmetz:
Expressivity of Planning with Horn Description Logic Ontologies (Technical Report). CoRR abs/2203.09361 (2022) - [i21]Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla, Valentin Wüstholz:
Specifying and Testing k-Safety Properties for Machine-Learning Models. CoRR abs/2206.06054 (2022) - 2021
- [c136]Álvaro Torralba, Patrick Speicher, Robert Künnemann, Marcel Steinmetz, Jörg Hoffmann:
Faster Stackelberg Planning via Symbolic Search and Information Sharing. AAAI 2021: 11998-12006 - [c135]Maximilian Fickert, Ivan Gavran, Ivan Fedotov, Jörg Hoffmann, Rupak Majumdar, Wheeler Ruml:
Choosing the Initial State for Online Replanning. AAAI 2021: 12311-12319 - [c134]Thorsten Klößner, Jörg Hoffmann, Marcel Steinmetz, Álvaro Torralba:
Pattern Databases for Goal-Probability Maximization in Probabilistic Planning. ICAPS 2021: 201-209 - [c133]Maria Christakis, Hasan Ferit Eniser, Holger Hermanns, Jörg Hoffmann, Yugesh Kothari, Jianlin Li, Jorge A. Navas, Valentin Wüstholz:
Automated Safety Verification of Programs Invoking Neural Networks. CAV (1) 2021: 201-224 - [c132]Daniel Gnad, Jan Eisenhut, Alberto Lluch-Lafuente, Jörg Hoffmann:
Model Checking ømega-Regular Properties with Decoupled Search. CAV (2) 2021: 411-434 - [c131]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Marcel Steinmetz:
Making DL-Lite Planning Practical (Extended Abstract). Description Logics 2021 - [c130]Frederik Wiehr, Anke Hirsch, Lukas Schmitz, Nina Knieriemen, Antonio Krüger, Alisa Kovtunova, Stefan Borgwardt, Ernie Chang, Vera Demberg, Marcel Steinmetz, Jörg Hoffmann:
Why Do I Have to Take Over Control? Evaluating Safe Handovers with Advance Notice and Explanations in HAD. ICMI 2021: 308-317 - [c129]Daniel Fiser, Daniel Gnad, Michael Katz, Jörg Hoffmann:
Custom-Design of FDR Encodings: The Case of Red-Black Planning. IJCAI 2021: 4054-4061 - [c128]Pascal Lauer, Álvaro Torralba, Daniel Fiser, Daniel Höller, Julia Wichlacz, Jörg Hoffmann:
Polynomial-Time in PDDL Input Size: Making the Delete Relaxation Feasible for Lifted Planning. IJCAI 2021: 4119-4126 - [c127]Valentin Seimetz, Rebecca Eifler, Jörg Hoffmann:
Learning Temporal Plan Preferences from Examples: An Empirical Study. IJCAI 2021: 4160-4166 - [c126]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Marcel Steinmetz:
Making DL-Lite Planning Practical. KR 2021: 641-645 - [c125]Timo P. Gros, Daniel Höller, Jörg Hoffmann, Michaela Klauck, Hendrik Meerkamp, Verena Wolf:
DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning. QEST 2021: 197-216 - [c124]Thorsten Klößner, Jörg Hoffmann:
Pattern Databases for Stochastic Shortest Path Problems. SOCS 2021: 131-135 - [c123]Julia Wichlacz, Daniel Höller, Jörg Hoffmann:
Landmark Heuristics for Lifted Planning - Extended Abstract. SOCS 2021: 242-244 - [d2]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Marcel Steinmetz:
Supplementary Material to "Making DL-Lite Planning Practical". Zenodo, 2021 - [d1]Stefan Borgwardt, Jörg Hoffmann, Alisa Kovtunova, Marcel Steinmetz:
Supplementary Material to "Making DL-Lite Planning Practical". Zenodo, 2021 - 2020
- [j37]Michaela Klauck, Marcel Steinmetz, Jörg Hoffmann, Holger Hermanns:
Bridging the Gap Between Probabilistic Model Checking and Probabilistic Planning: Survey, Compilations, and Empirical Comparison. J. Artif. Intell. Res. 68: 247-310 (2020) - [c122]Rebecca Eifler, Michael Cashmore, Jörg Hoffmann, Daniele Magazzeni, Marcel Steinmetz:
A New Approach to Plan-Space Explanation: Analyzing Plan-Property Dependencies in Oversubscription Planning. AAAI 2020: 9818-9826 - [c121]Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml, Jörg Hoffmann, Marek Petrik:
Beliefs We Can Believe in: Replacing Assumptions with Data in Real-Time Search. AAAI 2020: 9827-9834 - [c120]Jörg Hoffmann, Holger Hermanns, Michaela Klauck, Marcel Steinmetz, Erez Karpas, Daniele Magazzeni:
Let's Learn Their Language? A Case for Planning with Automata-Network Languages from Model Checking. AAAI 2020: 13569-13575 - [c119]Arne Köhn, Julia Wichlacz, Álvaro Torralba, Daniel Höller, Jörg Hoffmann, Alexander Koller:
Generating Instructions at Different Levels of Abstraction. COLING 2020: 2802-2813 - [c118]Patrick Ferber, Malte Helmert, Jörg Hoffmann:
Neural Network Heuristics for Classical Planning: A Study of Hyperparameter Space. ECAI 2020: 2346-2353 - [c117]Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Marcel Steinmetz:
Deep Statistical Model Checking. FORTE 2020: 96-114 - [c116]Rebecca Eifler, Marcel Steinmetz, Álvaro Torralba, Jörg Hoffmann:
Plan-Space Explanation via Plan-Property Dependencies: Faster Algorithms & More Powerful Properties. IJCAI 2020: 4091-4097 - [c115]Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck, Marcel Steinmetz:
TraceVis: Towards Visualization for Deep Statistical Model Checking. ISoLA (4) 2020: 27-46 - [c114]Rasha Faqeh, Christof Fetzer, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A. Köhl, Marcel Steinmetz, Christoph Weidenbach:
Towards Dynamic Dependable Systems Through Evidence-Based Continuous Certification. ISoLA (2) 2020: 416-439 - [c113]Timo P. Gros, Daniel Höller, Jörg Hoffmann, Verena Wolf:
Tracking the Race Between Deep Reinforcement Learning and Imitation Learning. QEST 2020: 11-17 - [c112]Arne Köhn, Julia Wichlacz, Christine Schäfer, Álvaro Torralba, Jörg Hoffmann, Alexander Koller:
MC-Saar-Instruct: a Platform for Minecraft Instruction Giving Agents. SIGdial 2020: 53-56 - [c111]Julia Wichlacz, Daniel Höller, Álvaro Torralba, Jörg Hoffmann:
Applying Monte-Carlo Tree Search in HTN Planning. SOCS 2020: 82-90 - [c110]Christel Baier, Maria Christakis, Timo P. Gros, David Groß, Stefan Gumhold, Holger Hermanns, Jörg Hoffmann, Michaela Klauck:
Lab Conditions for Research on Explainable Automated Decisions. TAILOR 2020: 83-90 - [p2]Jörg Hoffmann, Malte Helmert, Daniel Gnad, Florian Pommerening:
Planen. Handbuch der Künstlichen Intelligenz 2020: 395-428 - [e4]J. Christopher Beck, Olivier Buffet, Jörg Hoffmann, Erez Karpas, Shirin Sohrabi:
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020. AAAI Press 2020, ISBN 978-1-57735-824-4 [contents] - [i20]Timo P. Gros, Daniel Höller, Jörg Hoffmann, Verena Wolf:
Tracking the Race Between Deep Reinforcement Learning and Imitation Learning - Extended Version. CoRR abs/2008.00766 (2020) - [i19]Arne Köhn, Julia Wichlacz, Álvaro Torralba, Daniel Höller, Jörg Hoffmann, Alexander Koller:
Generating Instructions at Different Levels of Abstraction. CoRR abs/2010.03982 (2020) - [i18]Frederik Wiehr, Anke Hirsch, Florian Daiber, Antonio Krüger, Alisa Kovtunova, Stefan Borgwardt, Ernie Chang, Vera Demberg, Marcel Steinmetz, Jörg Hoffmann:
Safe Handover in Mixed-Initiative Control for Cyber-Physical Systems. CoRR abs/2010.10967 (2020) - [i17]Rebecca Eifler, Jörg Hoffmann:
Iterative Planning with Plan-Space Explanations: A Tool and User Study. CoRR abs/2011.09705 (2020)
2010 – 2019
- 2019
- [j36]Dorin Shmaryahu, Guy Shani, Jörg Hoffmann:
Comparative criteria for partially observable contingent planning. Auton. Agents Multi Agent Syst. 33(5): 481-517 (2019) - [j35]Daniel Gnad, Jörg Hoffmann, Martin Wehrle:
Strong Stubborn Set Pruning for Star-Topology Decoupled State Space Search. J. Artif. Intell. Res. 65: 343-392 (2019) - [c109]Andrew Mitchell, Wheeler Ruml, Fabian Spaniol, Jörg Hoffmann, Marek Petrik:
Real-Time Planning as Decision-Making under Uncertainty. AAAI 2019: 2338-2345 - [c108]Rebecca Eifler, Maximilian Fickert, Jörg Hoffmann, Wheeler Ruml:
Refining Abstraction Heuristics during Real-Time Planning. AAAI 2019: 7578-7585 - [c107]Daniel Gnad, Jörg Hoffmann:
On the Relation between Star-Topology Decoupling and Petri Net Unfolding. ICAPS 2019: 172-180 - [c106]Frederik Schmitt, Daniel Gnad, Jörg Hoffmann:
Advanced Factoring Strategies for Decoupled Search Using Linear Programming. ICAPS 2019: 377-381 - [c105]Dorin Shmaryahu, Jörg Hoffmann, Guy Shani:
Comparative Criteria for Partially Observable Contingent Planning. AAMAS 2019: 1740-1742 - [c104]Jörg Hoffmann, Daniele Magazzeni:
Explainable AI Planning (XAIP): Overview and the Case of Contrastive Explanation (Extended Abstract). RW 2019: 277-282 - [c103]Patrick Speicher, Marcel Steinmetz, Jörg Hoffmann, Michael Backes, Robert Künnemann:
Towards automated network mitigation analysis. SAC 2019: 1971-1978 - 2018
- [j34]Daniel Gnad, Jörg Hoffmann:
Star-topology decoupled state space search. Artif. Intell. 257: 24-60 (2018) - [c102]Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, Robert Künnemann:
Stackelberg Planning: Towards Effective Leader-Follower State Space Search. AAAI 2018: 6286-6293 - [c101]Michaela Klauck, Marcel Steinmetz, Jörg Hoffmann, Holger Hermanns:
Compiling Probabilistic Model Checking into Probabilistic Planning. ICAPS 2018: 150-154 - [c100]Dorin Shmaryahu, Guy Shani, Jörg Hoffmann, Marcel Steinmetz:
Simulated Penetration Testing as Contingent Planning. ICAPS 2018: 241-249 - [c99]Anna Wilhelm, Marcel Steinmetz, Jörg Hoffmann:
On Stubborn Sets and Planning with Resources. ICAPS 2018: 288-297 - [c98]Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Simeonovski, Giancarlo Pellegrino, Jörg Hoffmann, Michael Backes:
Formally Reasoning about the Cost and Efficacy of Securing the Email Infrastructure. EuroS&P 2018: 77-91 - [c97]Maximilian Fickert, Daniel Gnad, Jörg Hoffmann:
Unchaining the Power of Partial Delete Relaxation, Part II: Finding Plans with Red-Black State Space Search. IJCAI 2018: 4750-4756 - [c96]Marcel Steinmetz, Jörg Hoffmann:
LP Heuristics over Conjunctions: Compilation, Convergence, Nogood Learning. IJCAI 2018: 4837-4843 - [c95]Daniel Gnad, Patrick Dubbert, Alberto Lluch-Lafuente, Jörg Hoffmann:
Star-Topology Decoupling in SPIN. SPIN 2018: 103-114 - [r2]Jörg Hoffmann, Ingo Weber:
Web Service Composition. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - 2017
- [j33]Marcel Steinmetz, Jörg Hoffmann:
State space search nogood learning: Online refinement of critical-path dead-end detectors in planning. Artif. Intell. 245: 1-37 (2017) - [c94]Maximilian Fickert, Jörg Hoffmann:
Complete Local Search: Boosting Hill-Climbing through Online Relaxation Refinement. ICAPS 2017: 107-115 - [c93]Daniel Gnad, Álvaro Torralba, Alexander Shleyfman, Jörg Hoffmann:
Symmetry Breaking in Star-Topology Decoupled Search. ICAPS 2017: 125-134 - [c92]Patrick Speicher, Marcel Steinmetz, Daniel Gnad, Jörg Hoffmann, Alfonso Gerevini:
Beyond Red-Black Planning: Limited-Memory State Variables. ICAPS 2017: 269-273 - [c91]Marcel Steinmetz, Jörg Hoffmann:
Critical-Path Dead-End Detection versus NoGoods: Offline Equivalence and Online Learning. ICAPS 2017: 283-287 - [c90]Daniel Gnad, Valerie Poser, Jörg Hoffmann:
Beyond Forks: Finding and Ranking Star Factorings for Decoupled Search. IJCAI 2017: 4310-4316 - [c89]Marcel Steinmetz, Jörg Hoffmann:
Search and Learn: On Dead-End Detectors, the Traps they Set, and Trap Learning. IJCAI 2017: 4398-4404 - [c88]Maximilian Fickert, Jörg Hoffmann:
Ranking Conjunctions for Partial Delete Relaxation Heuristics in Planning. SOCS 2017: 38-46 - [c87]Daniel Gnad, Álvaro Torralba, Jörg Hoffmann:
Symbolic Leaf Representation in Decoupled Search. SOCS 2017: 124-128 - [i16]Michael Backes, Jörg Hoffmann, Robert Künnemann, Patrick Speicher, Marcel Steinmetz:
Simulated Penetration Testing and Mitigation Analysis. CoRR abs/1705.05088 (2017) - 2016
- [j32]Maximilian Fickert, Jörg Hoffmann, Marcel Steinmetz:
Combining the Delete Relaxation with Critical-Path Heuristics: A Direct Characterization. J. Artif. Intell. Res. 56: 269-327 (2016) - [j31]Marcel Steinmetz, Jörg Hoffmann, Olivier Buffet:
Goal Probability Analysis in Probabilistic Planning: Exploring and Enhancing the State of the Art. J. Artif. Intell. Res. 57: 229-271 (2016) - [j30]Vera Demberg, Jörg Hoffmann, David M. Howcroft, Dietrich Klakow, Álvaro Torralba:
Search Challenges in Natural Language Generation with Complex Optimization Objectives. Künstliche Intell. 30(1): 63-69 (2016) - [c86]Marcel Steinmetz, Jörg Hoffmann:
Towards Clause-Learning State Space Search: Learning to Recognize Dead-Ends. AAAI 2016: 760-768 - [c85]Jeanette Daum, Álvaro Torralba, Jörg Hoffmann, Patrik Haslum, Ingo Weber:
Practical Undoability Checking via Contingent Planning. ICAPS 2016: 106-114 - [c84]Marcel Steinmetz, Jörg Hoffmann, Olivier Buffet:
Revisiting Goal Probability Analysis in Probabilistic Planning. ICAPS 2016: 299-307 - [c83]Maximilian Schwenger, Álvaro Torralba, Jörg Hoffmann, David M. Howcroft, Vera Demberg:
From OpenCCG to AI Planning: Detecting Infeasible Edges in Sentence Generation. COLING 2016: 1524-1534 - [c82]Daniel Gnad, Martin Wehrle, Jörg Hoffmann:
Decoupled Strong Stubborn Sets. IJCAI 2016: 3110-3116 - [c81]Álvaro Torralba, Daniel Gnad, Patrick Dubbert, Jörg Hoffmann:
On State-Dominance Criteria in Fork-Decoupled Search. IJCAI 2016: 3265-3271 - [c80]Daniel Gnad, Marcel Steinmetz, Mathäus Jany, Jörg Hoffmann, Ivan Serina, Alfonso Gerevini:
Partial Delete Relaxation, Unchained: On Intractable Red-Black Planning and Its Applications. SOCS 2016: 45-53 - 2015
- [j29]Carmel Domshlak, Jörg Hoffmann, Michael Katz:
Red-black planning: A new systematic approach to partial delete relaxation. Artif. Intell. 221: 73-114 (2015) - [c79]Daniel Gnad, Jörg Hoffmann:
Beating LM-Cut with hmax (Sometimes): Fork-Decoupled State Space Search. ICAPS 2015: 88-96 - [c78]