


Остановите войну!
for scientists:


default search action
Bartosz Krawczyk
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j63]Lukasz Korycki, Bartosz Krawczyk
:
Adversarial concept drift detection under poisoning attacks for robust data stream mining. Mach. Learn. 112(10): 4013-4048 (2023) - [j62]Damien Dablain
, Bartosz Krawczyk
, Nitesh V. Chawla
:
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Trans. Neural Networks Learn. Syst. 34(9): 6390-6404 (2023) - [c101]Damien A. Dablain, Colin Bellinger, Bartosz Krawczyk, Nitesh V. Chawla:
Efficient Augmentation for Imbalanced Deep Learning. ICDE 2023: 1433-1446 - [i18]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Mixture of Gaussians for Deep Continual Learning. CoRR abs/2307.04094 (2023) - 2022
- [j61]Alberto Cano
, Bartosz Krawczyk:
ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams. Mach. Learn. 111(7): 2561-2599 (2022) - [j60]Lukasz Korycki, Bartosz Krawczyk:
Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams. Pattern Recognit. 129: 108749 (2022) - [i17]Gabriel Aguiar, Bartosz Krawczyk, Alberto Cano:
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. CoRR abs/2204.03719 (2022) - [i16]Damien Dablain, Colin Bellinger, Bartosz Krawczyk, Nitesh V. Chawla:
Efficient Augmentation for Imbalanced Deep Learning. CoRR abs/2207.06080 (2022) - [i15]Damien Dablain, Bartosz Krawczyk, Nitesh V. Chawla:
Towards A Holistic View of Bias in Machine Learning: Bridging Algorithmic Fairness and Imbalanced Learning. CoRR abs/2207.06084 (2022) - [i14]Damien A. Dablain, Colin Bellinger, Bartosz Krawczyk, David W. Aha, Nitesh V. Chawla:
Interpretable ML for Imbalanced Data. CoRR abs/2212.07743 (2022) - 2021
- [j59]Sina Ghadermarzi, Bartosz Krawczyk, Jiangning Song
, Lukasz A. Kurgan
:
XRRpred: accurate predictor of crystal structure quality from protein sequence. Bioinform. 37(23): 4366-4374 (2021) - [j58]Martha Roseberry, Bartosz Krawczyk, Youcef Djenouri
, Alberto Cano:
Self-adjusting k nearest neighbors for continual learning from multi-label drifting data streams. Neurocomputing 442: 10-25 (2021) - [j57]William C. Sleeman IV
, Bartosz Krawczyk:
Multi-class imbalanced big data classification on Spark. Knowl. Based Syst. 212: 106598 (2021) - [j56]Bartosz Krawczyk
:
Tensor decision trees for continual learning from drifting data streams. Mach. Learn. 110(11): 3015-3035 (2021) - [c100]Kushankur Ghosh
, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. IEEE BigData 2021: 4859-4868 - [c99]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Experience Replay for Continual Learning Under Concept Drift. CVPR Workshops 2021: 3649-3658 - [c98]Bartosz Krawczyk:
Tensor Decision Trees for Continual Learning from Drifting Data Streams. DSAA 2021: 1-2 - [c97]Lukasz Korycki, Bartosz Krawczyk:
Concept Drift Detection from Multi-Class Imbalanced Data Streams. ICDE 2021: 1068-1079 - [c96]Bartosz Krawczyk, Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
Undersampling with Support Vectors for Multi-Class Imbalanced Data Classification. IJCNN 2021: 1-7 - [c95]Filip Guzy
, Michal Wozniak
, Bartosz Krawczyk:
Evaluating and Explaining Generative Adversarial Networks for Continual Learning under Concept Drift. ICDM (Workshops) 2021: 295-303 - [c94]Bartosz Krawczyk, Alberto Cano:
Locally Linear Support Vector Machines for Imbalanced Data Classification. PAKDD (1) 2021: 616-628 - [c93]Lukasz Korycki, Bartosz Krawczyk:
Low-Dimensional Representation Learning from Imbalanced Data Streams. PAKDD (1) 2021: 629-641 - [c92]Lukasz Korycki, Bartosz Krawczyk:
Streaming Decision Trees for Lifelong Learning. ECML/PKDD (1) 2021: 502-518 - [i13]Lukasz Korycki, Bartosz Krawczyk:
Concept Drift Detection from Multi-Class Imbalanced Data Streams. CoRR abs/2104.10228 (2021) - [i12]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Experience Replay for Continual Learning under Concept Drift. CoRR abs/2104.11861 (2021) - [i11]Damien Dablain, Bartosz Krawczyk, Nitesh V. Chawla:
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. CoRR abs/2105.02340 (2021) - [i10]William C. Sleeman IV, Bartosz Krawczyk:
Imbalanced Big Data Oversampling: Taxonomy, Algorithms, Software, Guidelines and Future Directions. CoRR abs/2107.11508 (2021) - [i9]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. CoRR abs/2107.14194 (2021) - [i8]Lukasz Korycki, Bartosz Krawczyk:
Mining Drifting Data Streams on a Budget: Combining Active Learning with Self-Labeling. CoRR abs/2112.11019 (2021) - 2020
- [j55]William C. Sleeman IV, Joseph Nalluri, Khajamoinuddin Syed, Preetam Ghosh
, Bartosz Krawczyk, Michael Hagan, Jatinder Palta, Rishabh Kapoor:
A Machine Learning method for relabeling arbitrary DICOM structure sets to TG-263 defined labels. J. Biomed. Informatics 109: 103527 (2020) - [j54]Michal Koziarski, Michal Wozniak
, Bartosz Krawczyk:
Combined Cleaning and Resampling algorithm for multi-class imbalanced data with label noise. Knowl. Based Syst. 204: 106223 (2020) - [j53]Alberto Cano
, Bartosz Krawczyk:
Kappa Updated Ensemble for drifting data stream mining. Mach. Learn. 109(1): 175-218 (2020) - [j52]Bartosz Krawczyk
, Michal Koziarski, Michal Wozniak
:
Radial-Based Oversampling for Multiclass Imbalanced Data Classification. IEEE Trans. Neural Networks Learn. Syst. 31(8): 2818-2831 (2020) - [c91]Lukasz Korycki, Bartosz Krawczyk:
Online Oversampling for Sparsely Labeled Imbalanced and Non-Stationary Data Streams. IJCNN 2020: 1-8 - [i7]Michal Koziarski, Michal Wozniak, Bartosz Krawczyk:
Combined Cleaning and Resampling Algorithm for Multi-Class Imbalanced Data with Label Noise. CoRR abs/2004.03406 (2020) - [i6]Lukasz Korycki, Bartosz Krawczyk:
Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams. CoRR abs/2009.09382 (2020) - [i5]Lukasz Korycki, Bartosz Krawczyk:
Adversarial Concept Drift Detection under Poisoning Attacks for Robust Data Stream Mining. CoRR abs/2009.09497 (2020) - [i4]Lukasz Korycki, Bartosz Krawczyk:
Adaptive Deep Forest for Online Learning from Drifting Data Streams. CoRR abs/2010.07340 (2020)
2010 – 2019
- 2019
- [j51]José A. Sáez
, Mikel Galar, Bartosz Krawczyk:
Addressing the Overlapping Data Problem in Classification Using the One-vs-One Decomposition Strategy. IEEE Access 7: 83396-83411 (2019) - [j50]Anabel Gómez-Ríos
, Siham Tabik, Julián Luengo
, A. S. M. Shihavuddin
, Bartosz Krawczyk
, Francisco Herrera
:
Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. 118: 315-328 (2019) - [j49]José Ramón Cano, Pedro Antonio Gutiérrez
, Bartosz Krawczyk
, Michal Wozniak
, Salvador García
:
Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing 341: 168-182 (2019) - [j48]Michal Koziarski, Bartosz Krawczyk
, Michal Wozniak
:
Radial-Based oversampling for noisy imbalanced data classification. Neurocomputing 343: 19-33 (2019) - [j47]Przemyslaw Skryjomski
, Bartosz Krawczyk
, Alberto Cano
:
Speeding up k-Nearest Neighbors classifier for large-scale multi-label learning on GPUs. Neurocomputing 354: 10-19 (2019) - [j46]Bartosz Krawczyk
, Isaac Triguero, Salvador García
, Michal Wozniak
, Francisco Herrera:
Instance reduction for one-class classification. Knowl. Inf. Syst. 59(3): 601-628 (2019) - [j45]Alberto Cano
, Bartosz Krawczyk
:
Evolving rule-based classifiers with genetic programming on GPUs for drifting data streams. Pattern Recognit. 87: 248-268 (2019) - [j44]Martha Roseberry, Bartosz Krawczyk, Alberto Cano
:
Multi-Label Punitive kNN with Self-Adjusting Memory for Drifting Data Streams. ACM Trans. Knowl. Discov. Data 13(6): 60:1-60:31 (2019) - [c90]Lukasz Korycki, Alberto Cano, Bartosz Krawczyk:
Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams. IEEE BigData 2019: 2334-2343 - [c89]William C. Sleeman IV, Bartosz Krawczyk:
Bagging Using Instance-Level Difficulty for Multi-Class Imbalanced Big Data Classification on Spark. IEEE BigData 2019: 2484-2493 - [c88]Lukasz Korycki, Bartosz Krawczyk:
Unsupervised Drift Detector Ensembles for Data Stream Mining. DSAA 2019: 317-325 - [c87]Bartosz Krawczyk
, Michal Wozniak
:
On the Role of Cost-Sensitive Learning in Imbalanced Data Oversampling. ICCS (3) 2019: 180-191 - [c86]Bartosz Krawczyk, Alberto Cano:
Adaptive Ensemble Active Learning for Drifting Data Stream Mining. IJCAI 2019: 2763-2771 - [i3]Krzysztof J. Cios, Bartosz Krawczyk, Jacquelyne Cios, Kevin J. Staley:
Uniqueness of Medical Data Mining: How the new technologies and data they generate are transforming medicine. CoRR abs/1905.09203 (2019) - 2018
- [b1]Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati
, Bartosz Krawczyk, Francisco Herrera:
Learning from Imbalanced Data Sets. Springer 2018, ISBN 978-3-319-98073-7, pp. 1-377 - [j43]Bartosz Krawczyk
, Alberto Cano
:
Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Appl. Soft Comput. 68: 677-692 (2018) - [j42]Pawel Ksieniewicz
, Bartosz Krawczyk
, Michal Wozniak
:
Ensemble of Extreme Learning Machines with trained classifier combination and statistical features for hyperspectral data. Neurocomputing 271: 28-37 (2018) - [j41]Bartosz Krawczyk
, Bridget T. McInnes:
Local ensemble learning from imbalanced and noisy data for word sense disambiguation. Pattern Recognit. 78: 103-119 (2018) - [j40]Bartosz Krawczyk
, Mikel Galar
, Michal Wozniak
, Humberto Bustince
, Francisco Herrera
:
Dynamic ensemble selection for multi-class classification with one-class classifiers. Pattern Recognit. 83: 34-51 (2018) - [c85]Lukasz Korycki, Bartosz Krawczyk:
Clustering-Driven and Dynamically Diversified Ensemble for Drifting Data Streams. IEEE BigData 2018: 1037-1044 - [c84]Bartosz Krawczyk, Bernhard Pfahringer, Michal Wozniak
:
Combining active learning with concept drift detection for data stream mining. IEEE BigData 2018: 2239-2244 - [c83]Alberto Cano, Bartosz Krawczyk:
Learning Classification Rules with Differential Evolution for High-Speed Data Stream Mining on GPU s. CEC 2018: 1-8 - [c82]Andrzej Lapinski, Bartosz Krawczyk, Pawel Ksieniewicz
, Michal Wozniak
:
An Empirical Insight Into Concept Drift Detectors Ensemble Strategies. CEC 2018: 1-8 - [c81]Andriy Mulyar, Bartosz Krawczyk:
Addressing Local Class Imbalance in Balanced Datasets with Dynamic Impurity Decision Trees. DS 2018: 3-17 - [c80]José A. Sáez
, Héctor Quintián
, Bartosz Krawczyk, Michal Wozniak
, Emilio Corchado:
Multi-class Imbalanced Data Oversampling for Vertebral Column Pathologies Classification. HAIS 2018: 131-142 - [c79]Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar R. Zaïane, Nathalie Japkowicz:
Synthetic Oversampling with the Majority Class: A New Perspective on Handling Extreme Imbalance. ICDM 2018: 447-456 - [c78]Bartosz Krawczyk, Alberto Cano, Michal Wozniak
:
Selecting local ensembles for multi-class imbalanced data classification. IJCNN 2018: 1-8 - [c77]Luís Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, Paula Branco:
2nd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2018: 1-7 - [c76]Bartosz Krawczyk, Michal Wozniak
:
Leveraging Ensemble Pruning for Imbalanced Data Classification. SMC 2018: 439-444 - [i2]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Bartosz Krawczyk, Francisco Herrera:
Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation. CoRR abs/1804.00516 (2018) - [i1]José Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Michal Wozniak, Salvador García:
Monotonic classification: an overview on algorithms, performance measures and data sets. CoRR abs/1811.07155 (2018) - 2017
- [j39]Jerzy Kowalski
, Bartosz Krawczyk, Michal Wozniak
:
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble. Eng. Appl. Artif. Intell. 57: 134-141 (2017) - [j38]Sergio Ramírez-Gallego
, Bartosz Krawczyk, Salvador García
, Michal Wozniak
, Francisco Herrera:
A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing 239: 39-57 (2017) - [j37]Bartosz Krawczyk
, Leandro L. Minku
, João Gama
, Jerzy Stefanowski
, Michal Wozniak
:
Ensemble learning for data stream analysis: A survey. Inf. Fusion 37: 132-156 (2017) - [j36]Bartosz Krawczyk:
Active and adaptive ensemble learning for online activity recognition from data streams. Knowl. Based Syst. 138: 69-78 (2017) - [j35]Bartosz Krawczyk, Boguslaw Cyganek
:
Selecting locally specialised classifiers for one-class classification ensembles. Pattern Anal. Appl. 20(2): 427-439 (2017) - [j34]Michal Koziarski
, Bartosz Krawczyk, Michal Wozniak
:
The deterministic subspace method for constructing classifier ensembles. Pattern Anal. Appl. 20(4): 981-990 (2017) - [j33]Sergio Ramírez-Gallego
, Bartosz Krawczyk, Salvador García
, Michal Wozniak
, José Manuel Benítez
, Francisco Herrera:
Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark. IEEE Trans. Syst. Man Cybern. Syst. 47(10): 2727-2739 (2017) - [c75]Lukasz Korycki, Bartosz Krawczyk:
Combining Active Learning and Self-Labeling for Data Stream Mining. CORES 2017: 481-490 - [c74]Bartosz Krawczyk, Bridget T. McInnes, Alberto Cano
:
Sentiment Classification from Multi-class Imbalanced Twitter Data Using Binarization. HAIS 2017: 26-37 - [c73]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak
:
Radial-Based Approach to Imbalanced Data Oversampling. HAIS 2017: 318-327 - [c72]Gerald Schaefer, Mateusz Budnik, Bartosz Krawczyk:
Immersive browsing in an image sphere. IMCOM 2017: 26 - [c71]Bartosz Krawczyk, Michal Wozniak
:
Online query by committee for active learning from drifting data streams. IJCNN 2017: 2120-2127 - [c70]Luís Torgo, Bartosz Krawczyk, Paula Branco, Nuno Moniz:
Learning with Imbalanced Domains: Preface. LIDTA@PKDD/ECML 2017: 1-6 - [c69]Przemyslaw Skryjomski, Bartosz Krawczyk:
Influence of minority class instance types on SMOTE imbalanced data oversampling. LIDTA@PKDD/ECML 2017: 7-21 - [c68]Bartosz Krawczyk, Przemyslaw Skryjomski:
Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams. ECML/PKDD (2) 2017: 512-527 - 2016
- [j32]Boguslaw Cyganek, Manuel Graña, Bartosz Krawczyk, Andrzej Kasprzak, Piotr Porwik
, Krzysztof Walkowiak
, Michal Wozniak
:
A Survey of Big Data Issues in Electronic Health Record Analysis. Appl. Artif. Intell. 30(6): 497-520 (2016) - [j31]José A. Sáez
, Bartosz Krawczyk, Michal Wozniak
:
On the Influence of Class Noise in Medical Data Classification: Treatment Using Noise Filtering Methods. Appl. Artif. Intell. 30(6): 590-609 (2016) - [j30]Bartosz Krawczyk
, Mikel Galar
, Lukasz Jelen
, Francisco Herrera
:
Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38: 714-726 (2016) - [j29]Bartosz Krawczyk
, Michal Wozniak
:
Untrained weighted classifier combination with embedded ensemble pruning. Neurocomputing 196: 14-22 (2016) - [j28]Zhongliang Zhang, Bartosz Krawczyk
, Salvador García
, Alejandro Rosales-Pérez
, Francisco Herrera
:
Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. Based Syst. 106: 251-263 (2016) - [j27]Bartosz Krawczyk
, Michal Wozniak
:
Dynamic classifier selection for one-class classification. Knowl. Based Syst. 107: 43-53 (2016) - [j26]Bartosz Krawczyk
:
Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4): 221-232 (2016) - [j25]José A. Sáez
, Bartosz Krawczyk
, Michal Wozniak
:
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57: 164-178 (2016) - [c67]Bartosz Krawczyk:
Hybrid One-Class Ensemble for High-Dimensional Data Classification. ACIIDS (2) 2016: 136-144 - [c66]Pawel Ksieniewicz
, Bartosz Krawczyk, Michal Wozniak
:
Ensemble of One-Dimensional Classifiers for Hyperspectral Image Analysis. DMBD 2016: 513-520 - [c65]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak
:
Forming Classifier Ensembles with Deterministic Feature Subspaces. FedCSIS 2016: 89-95 - [c64]Bartosz Krawczyk, José A. Sáez
, Michal Wozniak
:
Tackling label noise with multi-class decomposition using fuzzy one-class support vector machines. FUZZ-IEEE 2016: 915-922 - [c63]Michal Wozniak
, Bartosz Krawczyk:
Workshop on Nonstationary Models of Pattern Recognition and Classifier Combinations. ICCS 2016: 1670 - [c62]Bartosz Krawczyk:
GPU-Accelerated Extreme Learning Machines for Imbalanced Data Streams with Concept Drift. ICCS 2016: 1692-1701 - [c61]Bartosz Krawczyk:
Cost-sensitive one-vs-one ensemble for multi-class imbalanced data. IJCNN 2016: 2447-2452 - 2015
- [j24]Bartosz Krawczyk
, Gerald Schaefer, Michal Wozniak
:
A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification. Artif. Intell. Medicine 65(3): 219-227 (2015) - [j23]Boguslaw Cyganek, Bartosz Krawczyk, Michal Wozniak
:
Multidimensional data classification with chordal distance based kernel and Support Vector Machines. Eng. Appl. Artif. Intell. 46: 10-22 (2015) - [j22]Bartosz Krawczyk, Jerzy Stefanowski
, Michal Wozniak
:
Data stream classification and big data analytics. Neurocomputing 150: 238-239 (2015) - [j21]Bartosz Krawczyk:
One-class classifier ensemble pruning and weighting with firefly algorithm. Neurocomputing 150: 490-500 (2015) - [j20]Bartosz Krawczyk, Michal Wozniak
:
Incremental weighted one-class classifier for mining stationary data streams. J. Comput. Sci. 9: 19-25 (2015) - [j19]Bartosz Krawczyk, Bogdan Trawinski:
Hybrid Ensemble Machine Learning for Complex and Dynamic Data. New Gener. Comput. 33(4): 341-344 (2015) - [j18]Bartosz Krawczyk:
Forming Ensembles of Soft One-Class Classifiers with Weighted Bagging. New Gener. Comput. 33(4): 449-466 (2015) - [j17]Bartosz Krawczyk, Michal Wozniak
, Francisco Herrera
:
On the usefulness of one-class classifier ensembles for decomposition of multi-class problems. Pattern Recognit. 48(12): 3969-3982 (2015) - [j16]Bartosz Krawczyk, Michal Wozniak
:
One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft Comput. 19(12): 3387-3400 (2015) - [c60]Bartosz Krawczyk, Michal Wozniak
:
Pruning Ensembles of One-Class Classifiers with X-means Clustering. ACIIDS (1) 2015: 484-493 - [c59]Bartosz Krawczyk, Michal Wozniak
:
Pruning Ensembles with Cost Constraints. ACIIDS (1) 2015: 503-512 - [c58]Boguslaw Cyganek, Bartosz Krawczyk:
Data Classification with Ensembles of One-Class Support Vector Machines and Sparse Nonnegative Matrix Factorization. ACIIDS (1) 2015: 526-535 - [c57]Bartosz Krawczyk:
Combining One-vs-One Decomposition and Ensemble Learning for Multi-class Imbalanced Data. CORES 2015: 27-36 - [c56]Bartosz Krawczyk, Michal Wozniak
:
Reacting to different types of concept drift with adaptive and incremental one-class classifiers. CYBCONF 2015: 30-35 - [c55]Bartosz Krawczyk, Michal Wozniak
:
Combining nearest neighbour classifiers based on small subsamples for big data analytics. CYBCONF 2015: 311-316 - [c54]Bartosz Krawczyk, Michal Wozniak
:
Wagging for Combining Weighted One-class Support Vector Machines. ICCS 2015: 1565-1573 - [c53]Bartosz Krawczyk, Michal Wozniak
:
Cost-Sensitive Neural Network with ROC-Based Moving Threshold for Imbalanced Classification. IDEAL 2015: 45-52 - [c52]