


Остановите войну!
for scientists:
Tongliang Liu
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j54]Xu Yang
, Cheng Deng
, Tongliang Liu
, Dacheng Tao
:
Heterogeneous Graph Attention Network for Unsupervised Multiple-Target Domain Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 44(4): 1992-2003 (2022) - [j53]Chen Gong, Qizhou Wang, Tongliang Liu, Bo Han, Jane You, Jian Yang, Dacheng Tao:
Instance-Dependent Positive and Unlabeled Learning With Labeling Bias Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44(8): 4163-4177 (2022) - [j52]Guoqing Bao
, Huai Chen, Tongliang Liu, Guanzhong Gong, Yong Yin, Lisheng Wang, Xiuying Wang
:
COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment. Pattern Recognit. 124: 108499 (2022) - [j51]Jingchen Ke
, Chen Gong
, Tongliang Liu
, Lin Zhao
, Jian Yang
, Dacheng Tao
:
Laplacian Welsch Regularization for Robust Semisupervised Learning. IEEE Trans. Cybern. 52(1): 164-177 (2022) - [j50]Xinpeng Ding, Nannan Wang, Shiwei Zhang, Ziyuan Huang, Xiaomeng Li, Mingqian Tang, Tongliang Liu, Xinbo Gao:
Exploring Language Hierarchy for Video Grounding. IEEE Trans. Image Process. 31: 4693-4706 (2022) - [j49]Yuxuan Du
, Min-Hsiu Hsieh
, Tongliang Liu
, Shan You
, Dacheng Tao
:
Quantum Differentially Private Sparse Regression Learning. IEEE Trans. Inf. Theory 68(8): 5217-5233 (2022) - [j48]Long Lan
, Tongliang Liu
, Xiang Zhang
, Chuanfu Xu
, Zhigang Luo
:
Label Propagated Nonnegative Matrix Factorization for Clustering. IEEE Trans. Knowl. Data Eng. 34(1): 340-351 (2022) - [j47]Lie Ju, Xin Wang, Lin Wang, Dwarikanath Mahapatra, Xin Zhao, Quan Zhou, Tongliang Liu, Zongyuan Ge:
Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation. IEEE Trans. Medical Imaging 41(6): 1533-1546 (2022) - [j46]Zhaoyu Zhang
, Mengyan Li, Haonian Xie, Jun Yu
, Tongliang Liu, Chang Wen Chen
:
TWGAN: Twin Discriminator Generative Adversarial Networks. IEEE Trans. Multim. 24: 677-688 (2022) - [j45]Zhengning Wu
, Xiaobo Xia
, Ruxin Wang
, Jiatong Li, Jun Yu
, Yinian Mao, Tongliang Liu
:
LR-SVM+: Learning Using Privileged Information with Noisy Labels. IEEE Trans. Multim. 24: 1080-1092 (2022) - [c67]Amirmohammad Pasdar, Young Choon Lee, Tongliang Liu, Seok-Hee Hong:
Train Me to Fight: Machine-Learning Based On-Device Malware Detection for Mobile Devices. CCGRID 2022: 239-248 - [c66]Songhua Wu, Mingming Gong, Bo Han, Yang Liu, Tongliang Liu:
Fair Classification with Instance-dependent Label Noise. CLeaR 2022: 927-943 - [c65]Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Masashi Sugiyama, Yang Liu:
To Smooth or Not? When Label Smoothing Meets Noisy Labels. ICML 2022: 23589-23614 - [c64]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network. ICML 2022: 25302-25312 - [c63]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. ICML 2022: 25595-25610 - [c62]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. ICML 2022: 27338-27352 - [c61]Dawei Zhou, Nannan Wang, Bo Han, Tongliang Liu:
Modeling Adversarial Noise for Adversarial Training. ICML 2022: 27353-27366 - [c60]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Du Bo, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. IJCAI 2022: 3688-3694 - [i106]Yexiong Lin, Yu Yao, Yuxuan Du, Jun Yu, Bo Han, Mingming Gong, Tongliang Liu:
Do We Need to Penalize Variance of Losses for Learning with Label Noise? CoRR abs/2201.12739 (2022) - [i105]Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Invariance Principle Meets Out-of-Distribution Generalization on Graphs. CoRR abs/2202.05441 (2022) - [i104]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. CoRR abs/2202.08057 (2022) - [i103]Shikun Li, Xiaobo Xia, Shiming Ge, Tongliang Liu:
Selective-Supervised Contrastive Learning with Noisy Labels. CoRR abs/2203.04181 (2022) - [i102]Shikun Li, Tongliang Liu, Jiyong Tan, Dan Zeng, Shiming Ge:
Trustable Co-label Learning from Multiple Noisy Annotators. CoRR abs/2203.04199 (2022) - [i101]Xiaoqing Guo, Jie Liu, Tongliang Liu, Yiyuan Yuan:
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation. CoRR abs/2203.15202 (2022) - [i100]Xiang An, Jiankang Deng, Jia Guo, Ziyong Feng, Xuhan Zhu, Jing Yang, Tongliang Liu:
Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC. CoRR abs/2203.15565 (2022) - [i99]Chuang Liu, Yibing Zhan, Chang Li, Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, Dacheng Tao:
Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. CoRR abs/2204.07321 (2022) - [i98]Xiaobo Xia, Wenhao Yang, Jie Ren, Yewen Li, Yibing Zhan, Bo Han, Tongliang Liu:
Pluralistic Image Completion with Probabilistic Mixture-of-Experts. CoRR abs/2205.09086 (2022) - [i97]Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, Howard Bondell:
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models. CoRR abs/2205.13869 (2022) - [i96]Aoqi Zuo, Susan Wei, Tongliang Liu, Bo Han, Kun Zhang, Mingming Gong:
Counterfactual Fairness with Partially Known Causal Graph. CoRR abs/2205.13972 (2022) - [i95]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Bo Du, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. CoRR abs/2205.14826 (2022) - [i94]Yingbin Bai, Erkun Yang, Zhaoqing Wang, Yuxuan Du, Bo Han, Cheng Deng, Dadong Wang, Tongliang Liu:
MSR: Making Self-supervised learning Robust to Aggressive Augmentations. CoRR abs/2206.01999 (2022) - [i93]De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama:
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation. CoRR abs/2206.02791 (2022) - [i92]Jinkai Tian, Xiaoyu Sun, Yuxuan Du, Shanshan Zhao, Qing Liu, Kaining Zhang, Wei Yi, Wanrong Huang, Chaoyue Wang, Xingyao Wu, Min-Hsiu Hsieh, Tongliang Liu, Wenjing Yang, Dacheng Tao:
Recent Advances for Quantum Neural Networks in Generative Learning. CoRR abs/2206.03066 (2022) - [i91]Xiong Peng, Feng Liu, Jingfen Zhang, Long Lan, Junjie Ye, Tongliang Liu, Bo Han:
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. CoRR abs/2206.05483 (2022) - [i90]Lianyang Ma, Yu Yao, Tao Liang, Tongliang Liu:
Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment Analysis in Videos. CoRR abs/2206.07981 (2022) - [i89]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. CoRR abs/2206.08675 (2022) - [i88]Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu:
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style. CoRR abs/2207.03162 (2022) - [i87]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. CoRR abs/2207.12203 (2022) - 2021
- [j44]Zhe Chen
, Wanli Ouyang, Tongliang Liu, Dacheng Tao:
A Shape Transformation-based Dataset Augmentation Framework for Pedestrian Detection. Int. J. Comput. Vis. 129(4): 1121-1138 (2021) - [j43]Chen Gong
, Hong Shi, Tongliang Liu
, Chuang Zhang, Jian Yang
, Dacheng Tao
:
Loss Decomposition and Centroid Estimation for Positive and Unlabeled Learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(3): 918-932 (2021) - [j42]Shuai Li
, Kui Jia
, Yuxin Wen
, Tongliang Liu
, Dacheng Tao
:
Orthogonal Deep Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(4): 1352-1368 (2021) - [j41]Jia Shao, Bo Du
, Chen Wu
, Mingming Gong
, Tongliang Liu
:
HRSiam: High-Resolution Siamese Network, Towards Space-Borne Satellite Video Tracking. IEEE Trans. Image Process. 30: 3056-3068 (2021) - [j40]Xinpeng Ding
, Nannan Wang
, Xinbo Gao
, Jie Li, Xiaoyu Wang, Tongliang Liu
:
KFC: An Efficient Framework for Semi-Supervised Temporal Action Localization. IEEE Trans. Image Process. 30: 6869-6878 (2021) - [c59]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. AAAI 2021: 10183-10191 - [c58]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. AAAI 2021: 10192-10200 - [c57]Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu:
A Machine Learning Approach for Predicting Human Preference for Graph Layouts*. PacificVis 2021: 6-10 - [c56]Zhen Huang, Xu Shen, Jun Xing, Tongliang Liu, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, Xian-Sheng Hua:
Revisiting Knowledge Distillation: An Inheritance and Exploration Framework. CVPR 2021: 3579-3588 - [c55]Zhaowei Zhu, Tongliang Liu, Yang Liu:
A Second-Order Approach to Learning With Instance-Dependent Label Noise. CVPR 2021: 10113-10123 - [c54]Dawei Zhou, Nannan Wang, Chunlei Peng, Xinbo Gao, Xiaoyu Wang, Jun Yu, Tongliang Liu:
Removing Adversarial Noise in Class Activation Feature Space. ICCV 2021: 7858-7867 - [c53]Yingbin Bai, Tongliang Liu:
Me-Momentum: Extracting Hard Confident Examples from Noisily Labeled Data. ICCV 2021: 9292-9301 - [c52]Jun Yu, Xinlong Hao, Zeyu Cui, Peng He, Tongliang Liu:
Boosting Fairness for Masked Face Recognition. ICCVW 2021: 1531-1540 - [c51]Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, Yi Chang:
Robust early-learning: Hindering the memorization of noisy labels. ICLR 2021 - [c50]Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama:
Confidence Scores Make Instance-dependent Label-noise Learning Possible. ICML 2021: 825-836 - [c49]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. ICML 2021: 2880-2891 - [c48]Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama:
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. ICML 2021: 3564-3575 - [c47]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-noise Learning without Anchor Points. ICML 2021: 6403-6413 - [c46]Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu:
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels. ICML 2021: 11285-11295 - [c45]Dawei Zhou, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao:
Towards Defending against Adversarial Examples via Attack-Invariant Features. ICML 2021: 12835-12845 - [c44]Zhaoqing Wang, Xiangyu Kong, Zhanbei Cui, Ming Wu, Chuang Zhang, Mingming Gong, Tongliang Liu:
Vecnet: A Spectral and Multi-Scale Spatial Fusion Deep Network for Pixel-Level Cloud Type Classification in Himawari-8 Imagery. IGARSS 2021: 4083-4086 - [c43]Lie Ju
, Xin Wang, Lin Wang, Tongliang Liu, Xin Zhao, Tom Drummond, Dwarikanath Mahapatra, Zongyuan Ge:
Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. MICCAI (8) 2021: 3-12 - [c42]Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, Tongliang Liu:
Confident Anchor-Induced Multi-Source Free Domain Adaptation. NeurIPS 2021: 2848-2860 - [c41]Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang:
Instance-dependent Label-noise Learning under a Structural Causal Model. NeurIPS 2021: 4409-4420 - [c40]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok:
TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation. NeurIPS 2021: 20970-20982 - [c39]Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Probabilistic Margins for Instance Reweighting in Adversarial Training. NeurIPS 2021: 23258-23269 - [c38]Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu:
Understanding and Improving Early Stopping for Learning with Noisy Labels. NeurIPS 2021: 24392-24403 - [c37]Jiayu He, Matloob Khushi, Nguyen H. Tran, Tongliang Liu:
Robust Dual Recurrent Neural Networks for Financial Time Series Prediction. SDM 2021: 747-755 - [i86]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. CoRR abs/2101.05467 (2021) - [i85]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. CoRR abs/2102.01886 (2021) - [i84]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-Noise Learning without Anchor Points. CoRR abs/2102.02400 (2021) - [i83]Jianing Zhu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Hongxia Yang, Mohan S. Kankanhalli, Masashi Sugiyama:
Understanding the Interaction of Adversarial Training with Noisy Labels. CoRR abs/2102.03482 (2021) - [i82]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Bo Han:
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data. CoRR abs/2102.04002 (2021) - [i81]Lie Ju, Xin Wang, Lin Wang, Dwarikanath Mahapatra, Xin Zhao, Mehrtash Harandi, Tom Drummond, Tongliang Liu, Zongyuan Ge:
Improving Medical Image Classification with Label Noise Using Dual-uncertainty Estimation. CoRR abs/2103.00528 (2021) - [i80]Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu:
A Machine Learning Approach for Predicting Human Preference for Graph Layouts. CoRR abs/2103.03665 (2021) - [i79]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. CoRR abs/2103.09468 (2021) - [i78]Dawei Zhou, Nannan Wang, Chunlei Peng, Xinbo Gao, Xiaoyu Wang, Jun Yu, Tongliang Liu:
Removing Adversarial Noise in Class Activation Feature Space. CoRR abs/2104.09197 (2021) - [i77]Lie Ju, Xin Wang, Lin Wang, Tongliang Liu, Xin Zhao, Tom Drummond, Dwarikanath Mahapatra, Zongyuan Ge:
Relational Subsets Knowledge Distillation for Long-tailed Retinal Diseases Recognition. CoRR abs/2104.11057 (2021) - [i76]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Label-noise Transition Matrix using DNNs. CoRR abs/2105.13001 (2021) - [i75]Jingfeng Zhang, Xilie Xu, Bo Han, Tongliang Liu, Gang Niu, Lizhen Cui, Masashi Sugiyama:
NoiLIn: Do Noisy Labels Always Hurt Adversarial Training? CoRR abs/2105.14676 (2021) - [i74]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels. CoRR abs/2106.00445 (2021) - [i73]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Instance Correction for Learning with Open-set Noisy Labels. CoRR abs/2106.00455 (2021) - [i72]Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Yang Liu:
Understanding (Generalized) Label Smoothing when Learning with Noisy Labels. CoRR abs/2106.04149 (2021) - [i71]Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang:
Reliable Adversarial Distillation with Unreliable Teachers. CoRR abs/2106.04928 (2021) - [i70]Dawei Zhou, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao:
Towards Defending against Adversarial Examples via Attack-Invariant Features. CoRR abs/2106.05036 (2021) - [i69]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Jun Yu, Xiaoyu Wang, Tongliang Liu:
Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training. CoRR abs/2106.05453 (2021) - [i68]Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang:
Adversarial Robustness through the Lens of Causality. CoRR abs/2106.06196 (2021) - [i67]Chenhong Zhou, Feng Liu, Chen Gong, Tongliang Liu, Bo Han, William Kwok-Wai Cheung:
KRADA: Known-region-aware Domain Alignment for Open World Semantic Segmentation. CoRR abs/2106.06237 (2021) - [i66]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok:
TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation. CoRR abs/2106.06326 (2021) - [i65]Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Junzhou Huang:
PI-GNN: A Novel Perspective on Semi-Supervised Node Classification against Noisy Labels. CoRR abs/2106.07451 (2021) - [i64]Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Probabilistic Margins for Instance Reweighting in Adversarial Training. CoRR abs/2106.07904 (2021) - [i63]Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu:
Understanding and Improving Early Stopping for Learning with Noisy Labels. CoRR abs/2106.15853 (2021) - [i62]Zhen Huang, Xu Shen, Jun Xing, Tongliang Liu, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, Xian-Sheng Hua:
Revisiting Knowledge Distillation: An Inheritance and Exploration Framework. CoRR abs/2107.00181 (2021) - [i61]Xiaobo Xia, Shuo Shan, Mingming Gong, Nannan Wang, Fei Gao, Haikun Wei, Tongliang Liu:
Kernel Mean Estimation by Marginalized Corrupted Distributions. CoRR abs/2107.04855 (2021) - [i60]Zhaoqing Wang, Qiang Li, Guoxin Zhang, Pengfei Wan, Wen Zheng, Nannan Wang, Mingming Gong, Tongliang Liu:
Exploring Set Similarity for Dense Self-supervised Representation Learning. CoRR abs/2107.08712 (2021) - [i59]Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang:
Instance-dependent Label-noise Learning under a Structural Causal Model. CoRR abs/2109.02986 (2021) - [i58]Dawei Zhou, Nannan Wang, Tongliang Liu, Bo Han:
Modelling Adversarial Noise for Adversarial Defense. CoRR abs/2109.09901 (2021) - [i57]Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, Yang Liu:
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations. CoRR abs/2110.12088 (2021) - [i56]Xin Jin, Tianyu He, Zhiheng Yin, Xu Shen, Tongliang Liu, Xinchao Wang, Jianqiang Huang, Xian-Sheng Hua, Zhibo Chen:
Meta Clustering Learning for Large-scale Unsupervised Person Re-identification. CoRR abs/2111.10032 (2021) - [i55]Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, Tongliang Liu:
CRIS: CLIP-Driven Referring Image Segmentation. CoRR abs/2111.15174 (2021) - [i54]Joshua Yee Kim, Tongliang Liu, Kalina Yacef:
Transfer Learning in Conversational Analysis through Reusing Preprocessing Data as Supervisors. CoRR abs/2112.03032 (2021) - [i53]Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, Howard Bondell:
Federated Causal Discovery. CoRR abs/2112.03555 (2021) - 2020
- [j39]Xinwang Liu
, Xinzhong Zhu, Miaomiao Li
, Lei Wang
, En Zhu
, Tongliang Liu
, Marius Kloft, Dinggang Shen
, Jianping Yin, Wen Gao:
Multiple Kernel $k$k-Means with Incomplete Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 42(5): 1191-1204 (2020) - [j38]Xinwang Liu
, Lei Wang
, Xinzhong Zhu, Miaomiao Li
, En Zhu
, Tongliang Liu
, Li Liu
, Yong Dou, Jianping Yin:
Absent Multiple Kernel Learning Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 42(6): 1303-1316 (2020) - [j37]Erkun Yang
, Tongliang Liu
, Cheng Deng
, Dacheng Tao
:
Adversarial Examples for Hamming Space Search. IEEE Trans. Cybern. 50(4): 1473-1484 (2020) - [j36]Xinpeng Ding
, Nannan Wang
, Xinbo Gao
, Jie Li, Xiaoyu Wang, Tongliang Liu
:
Group Feedback Capsule Network. IEEE Trans. Image Process. 29: 6789-6799 (2020) - [j35]Yihang Lou, Ling-Yu Duan
, Yong Luo, Ziqian Chen
, Tongliang Liu
, Shiqi Wang
, Wen Gao:
Towards Efficient Front-End Visual Sensing for Digital Retina: A Model-Centric Paradigm. IEEE Trans. Multim. 22(11): 3002-3013 (2020) - [j34]Cheng Deng
, Erkun Yang
, Tongliang Liu
, Dacheng Tao
:
Two-Stream Deep Hashing With Class-Specific Centers for Supervised Image Search. IEEE Trans. Neural Networks Learn. Syst. 31(6): 2189-2201 (2020) - [j33]Yang Wei
, Chen Gong
, Shuo Chen
, Tongliang Liu
, Jian Yang
, Dacheng Tao
:
Harnessing Side Information for Classification Under Label Noise. IEEE Trans. Neural Networks Learn. Syst. 31(9): 3178-3192 (2020) - [j32]Fengxiang He
, Tongliang Liu
, Dacheng Tao
:
Why ResNet Works? Residuals Generalize. IEEE Trans. Neural Networks Learn. Syst. 31(12): 5349-5362 (2020) - [c36]Maoying Qiao, Jun Yu, Tongliang Liu, Xinchao Wang, Dacheng Tao:
Diversified Bayesian Nonnegative Matrix Factorization. AAAI 2020: 5420-5427 - [c35]Yanwu Xu, Mingming Gong, Junxiang Chen, Tongliang Liu, Kun Zhang, Kayhan Batmanghelich:
Generative-Discriminative Complementary Learning. AAAI 2020: 6526-6533 - [c34]Jiankang Deng, Jia Guo, Tongliang Liu, Mingming Gong, Stefanos Zafeiriou:
Sub-center ArcFace: Boosting Face Recognition by Large-Scale Noisy Web Faces. ECCV (11) 2020: 741-757 - [c33]Jiacheng Cheng
, Tongliang Liu, Kotagiri Ramamohanarao, Dacheng Tao:
Learning with Bounded Instance and Label-dependent Label Noise. ICML 2020: 1789-1799 - [c32]Jiaxian Guo, Mingming Gong, Tongliang Liu, Kun Zhang, Dacheng Tao:
LTF: A Label Transformation Framework for Correcting Label Shift. ICML 2020: 3843-3853 - [c31]Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang, Kayhan Batmanghelich, Dacheng Tao:
Label-Noise Robust Domain Adaptation. ICML 2020: 10913-10924 - [c30]