default search action
Tongliang Liu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j88]Yuanyuan Wang, Wei Huang, Mingming Gong, Xi Geng, Tongliang Liu, Kun Zhang, Dacheng Tao:
Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations. J. Mach. Learn. Res. 25: 154:1-154:50 (2024) - [j87]Jialiang Shen, Yu Yao, Shaoli Huang, Zhiyong Wang, Jing Zhang, Ruxing Wang, Jun Yu, Tongliang Liu:
ProtoSimi: label correction for fine-grained visual categorization. Mach. Learn. 113(4): 1903-1920 (2024) - [j86]DeLiang Wang, Mauro Forti, Tongliang Liu, Taro Toyoizumi:
Expansion of the editorial team. Neural Networks 173: 106209 (2024) - [j85]Sichao Fu, Xueqi Ma, Yibing Zhan, Fanyu You, Qinmu Peng, Tongliang Liu, James Bailey, Danilo P. Mandic:
Finding core labels for maximizing generalization of graph neural networks. Neural Networks 180: 106635 (2024) - [j84]Xiaobo Xia, Pengqian Lu, Chen Gong, Bo Han, Jun Yu, Jun Yu, Tongliang Liu:
Regularly Truncated M-Estimators for Learning With Noisy Labels. IEEE Trans. Pattern Anal. Mach. Intell. 46(5): 3522-3536 (2024) - [j83]Jingfeng Zhang, Bo Song, Haohan Wang, Bo Han, Tongliang Liu, Lei Liu, Masashi Sugiyama:
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-Noise Learning. IEEE Trans. Pattern Anal. Mach. Intell. 46(6): 4398-4409 (2024) - [j82]Songhua Wu, Tianyi Zhou, Yuxuan Du, Jun Yu, Bo Han, Tongliang Liu:
A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels. IEEE Trans. Pattern Anal. Mach. Intell. 46(7): 4830-4842 (2024) - [j81]Jingyi Wang, Xiaobo Xia, Long Lan, Xinghao Wu, Jun Yu, Wenjing Yang, Bo Han, Tongliang Liu:
Tackling Noisy Labels With Network Parameter Additive Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 46(9): 6341-6354 (2024) - [j80]Yulong Yang, Chenhao Lin, Qian Li, Zhengyu Zhao, Haoran Fan, Dawei Zhou, Nannan Wang, Tongliang Liu, Chao Shen:
Quantization Aware Attack: Enhancing Transferable Adversarial Attacks by Model Quantization. IEEE Trans. Inf. Forensics Secur. 19: 3265-3278 (2024) - [j79]Wankou Yang, Jiren Mai, Fei Zhang, Tongliang Liu, Bo Han:
Exploit CAM by itself: Complementary Learning System for Weakly Supervised Semantic Segmentation. Trans. Mach. Learn. Res. 2024 (2024) - [j78]Zhengning Wu, Tianyu He, Xiaobo Xia, Jun Yu, Xu Shen, Tongliang Liu:
Conditional Consistency Regularization for Semi-Supervised Multi-Label Image Classification. IEEE Trans. Multim. 26: 4206-4216 (2024) - [j77]Mingyu Li, Tao Zhou, Bo Han, Tongliang Liu, Xinkai Liang, Jiajia Zhao, Chen Gong:
Class-Wise Contrastive Prototype Learning for Semi-Supervised Classification Under Intersectional Class Mismatch. IEEE Trans. Multim. 26: 8145-8156 (2024) - [j76]Tianfu Wang, Li Shen, Qilin Fan, Tong Xu, Tongliang Liu, Hui Xiong:
Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning. IEEE Trans. Serv. Comput. 17(3): 1001-1015 (2024) - [c172]Qiang Qu, Yiran Shen, Xiaoming Chen, Yuk Ying Chung, Tongliang Liu:
E2HQV: High-Quality Video Generation from Event Camera via Theory-Inspired Model-Aided Deep Learning. AAAI 2024: 4632-4640 - [c171]Rundong He, Yue Yuan, Zhongyi Han, Fan Wang, Wan Su, Yilong Yin, Tongliang Liu, Yongshun Gong:
Exploring Channel-Aware Typical Features for Out-of-Distribution Detection. AAAI 2024: 12402-12410 - [c170]Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Junhao Liu, Tongliang Liu, Fei Huang, Yongbin Li:
One-Shot Learning as Instruction Data Prospector for Large Language Models. ACL (1) 2024: 4586-4601 - [c169]Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, Bo Han:
Enhancing One-Shot Federated Learning Through Data and Ensemble Co-Boosting. ICLR 2024 - [c168]Ziming Hong, Zhenyi Wang, Li Shen, Yu Yao, Zhuo Huang, Shiming Chen, Chuanwu Yang, Mingming Gong, Tongliang Liu:
Improving Non-Transferable Representation Learning by Harnessing Content and Style. ICLR 2024 - [c167]Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, Bo Han:
Negative Label Guided OOD Detection with Pretrained Vision-Language Models. ICLR 2024 - [c166]Cong Lei, Yuxuan Du, Peng Mi, Jun Yu, Tongliang Liu:
Neural Auto-designer for Enhanced Quantum Kernels. ICLR 2024 - [c165]Longkang Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. ICLR 2024 - [c164]Xiu-Chuan Li, Kun Zhang, Tongliang Liu:
Causal Structure Recovery with Latent Variables under Milder Distributional and Graphical Assumptions. ICLR 2024 - [c163]Runqi Lin, Chaojian Yu, Bo Han, Tongliang Liu:
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting. ICLR 2024 - [c162]Jun Nie, Yonggang Zhang, Zhen Fang, Tongliang Liu, Bo Han, Xinmei Tian:
Out-of-Distribution Detection with Negative Prompts. ICLR 2024 - [c161]Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu, Bo Han, Xiaowen Chu:
FedImpro: Measuring and Improving Client Update in Federated Learning. ICLR 2024 - [c160]Suqin Yuan, Lei Feng, Tongliang Liu:
Early Stopping Against Label Noise Without Validation Data. ICLR 2024 - [c159]Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-Hao Chen, Jiale Liu, Qingyun Wu, Tongliang Liu:
IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models. ICLR 2024 - [c158]Yonggang Zhang, Zhiqin Yang, Xinmei Tian, Nannan Wang, Tongliang Liu, Bo Han:
Robust Training of Federated Models with Extremely Label Deficiency. ICLR 2024 - [c157]Jiyang Zheng, Yu Yao, Bo Han, Dadong Wang, Tongliang Liu:
Enhancing Contrastive Learning for Ordinal Regression via Ordinal Content Preserved Data Augmentation. ICLR 2024 - [c156]Pengfei Zheng, Yonggang Zhang, Zhen Fang, Tongliang Liu, Defu Lian, Bo Han:
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation. ICLR 2024 - [c155]Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, Bo Han:
Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection. ICML 2024 - [c154]Yusong Hu, De Cheng, Dingwen Zhang, Nannan Wang, Tongliang Liu, Xinbo Gao:
Task-aware Orthogonal Sparse Network for Exploring Shared Knowledge in Continual Learning. ICML 2024 - [c153]Zhuo Huang, Chang Liu, Yinpeng Dong, Hang Su, Shibao Zheng, Tongliang Liu:
Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning. ICML 2024 - [c152]Muyang Li, Xiaobo Xia, Runze Wu, Fengming Huang, Jun Yu, Bo Han, Tongliang Liu:
Towards Realistic Model Selection for Semi-supervised Learning. ICML 2024 - [c151]Runqi Lin, Chaojian Yu, Bo Han, Hang Su, Tongliang Liu:
Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency. ICML 2024 - [c150]Hongduan Tian, Feng Liu, Tongliang Liu, Bo Du, Yiu-ming Cheung, Bo Han:
MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence. ICML 2024 - [c149]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. ICML 2024 - [c148]Yuhao Wu, Jiangchao Yao, Bo Han, Lina Yao, Tongliang Liu:
Unraveling the Impact of Heterophilic Structures on Graph Positive-Unlabeled Learning. ICML 2024 - [c147]Yuhao Wu, Jiangchao Yao, Xiaobo Xia, Jun Yu, Ruxin Wang, Bo Han, Tongliang Liu:
Mitigating Label Noise on Graphs via Topological Sample Selection. ICML 2024 - [c146]Xiaobo Xia, Jiale Liu, Shaokun Zhang, Qingyun Wu, Hongxin Wei, Tongliang Liu:
Refined Coreset Selection: Towards Minimal Coreset Size under Model Performance Constraints. ICML 2024 - [c145]Jiacheng Zhang, Feng Liu, Dawei Zhou, Jingfeng Zhang, Tongliang Liu:
Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training. ICML 2024 - [e2]Tongliang Liu, Geoffrey I. Webb, Lin Yue, Dadong Wang:
AI 2023: Advances in Artificial Intelligence - 36th Australasian Joint Conference on Artificial Intelligence, AI 2023, Brisbane, QLD, Australia, November 28 - December 1, 2023, Proceedings, Part I. Lecture Notes in Computer Science 14471, Springer 2024, ISBN 978-981-99-8387-2 [contents] - [e1]Tongliang Liu, Geoffrey I. Webb, Lin Yue, Dadong Wang:
AI 2023: Advances in Artificial Intelligence - 36th Australasian Joint Conference on Artificial Intelligence, AI 2023, Brisbane, QLD, Australia, November 28 - December 1, 2023, Proceedings, Part II. Lecture Notes in Computer Science 14472, Springer 2024, ISBN 978-981-99-8390-2 [contents] - [i198]Xue Dong, Xuemeng Song, Tongliang Liu, Weili Guan:
Prompt-based Multi-interest Learning Method for Sequential Recommendation. CoRR abs/2401.04312 (2024) - [i197]Qiang Qu, Yiran Shen, Xiaoming Chen, Yuk Ying Chung, Tongliang Liu:
E2HQV: High-Quality Video Generation from Event Camera via Theory-Inspired Model-Aided Deep Learning. CoRR abs/2401.08117 (2024) - [i196]Guanglin Zhou, Zhongyi Han, Shiming Chen, Biwei Huang, Liming Zhu, Tongliang Liu, Lina Yao, Kun Zhang:
HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization. CoRR abs/2401.09716 (2024) - [i195]Cong Lei, Yuxuan Du, Peng Mi, Jun Yu, Tongliang Liu:
Neural auto-designer for enhanced quantum kernels. CoRR abs/2401.11098 (2024) - [i194]Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming Gong, James Cheng, Bo Han, Kun Zhang:
Discovery of the Hidden World with Large Language Models. CoRR abs/2402.03941 (2024) - [i193]Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu, Bo Han, Xiaowen Chu:
FedImpro: Measuring and Improving Client Update in Federated Learning. CoRR abs/2402.07011 (2024) - [i192]Zhaoqing Wang, Xiaobo Xia, Ziye Chen, Xiao He, Yandong Guo, Mingming Gong, Tongliang Liu:
Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision. CoRR abs/2402.08960 (2024) - [i191]Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. CoRR abs/2402.13241 (2024) - [i190]Yonggang Zhang, Zhiqin Yang, Xinmei Tian, Nannan Wang, Tongliang Liu, Bo Han:
Robust Training of Federated Models with Extremely Label Deficiency. CoRR abs/2402.14430 (2024) - [i189]Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, Bo Han:
Enhancing One-Shot Federated Learning Through Data and Ensemble Co-Boosting. CoRR abs/2402.15070 (2024) - [i188]Yuhao Wu, Jiangchao Yao, Xiaobo Xia, Jun Yu, Ruxin Wang, Bo Han, Tongliang Liu:
Mitigating Label Noise on Graph via Topological Sample Selection. CoRR abs/2403.01942 (2024) - [i187]Pengfei Zheng, Yonggang Zhang, Zhen Fang, Tongliang Liu, Defu Lian, Bo Han:
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation. CoRR abs/2403.08840 (2024) - [i186]Jingyi Wang, Xiaobo Xia, Long Lan, Xinghao Wu, Jun Yu, Wenjing Yang, Bo Han, Tongliang Liu:
Tackling Noisy Labels with Network Parameter Additive Decomposition. CoRR abs/2403.13241 (2024) - [i185]Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, Tongliang Liu:
Few-Shot Adversarial Prompt Learning on Vision-Language Models. CoRR abs/2403.14774 (2024) - [i184]Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, Bo Han:
Negative Label Guided OOD Detection with Pretrained Vision-Language Models. CoRR abs/2403.20078 (2024) - [i183]Zhuo Li, He Zhao, Zhen Li, Tongliang Liu, Dandan Guo, Xiang Wan:
Extracting Clean and Balanced Subset for Noisy Long-tailed Classification. CoRR abs/2404.06795 (2024) - [i182]Runqi Lin, Chaojian Yu, Tongliang Liu:
Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization. CoRR abs/2404.08154 (2024) - [i181]Yuxiang Zheng, Zhongyi Han, Yilong Yin, Xin Gao, Tongliang Liu:
Can We Treat Noisy Labels as Accurate? CoRR abs/2405.12969 (2024) - [i180]Run Luo, Yunshui Li, Longze Chen, Wanwei He, Ting-En Lin, Ziqiang Liu, Lei Zhang, Zikai Song, Xiaobo Xia, Tongliang Liu, Min Yang, Binyuan Hui:
DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception. CoRR abs/2405.15232 (2024) - [i179]Runqi Lin, Chaojian Yu, Bo Han, Hang Su, Tongliang Liu:
Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency. CoRR abs/2405.16262 (2024) - [i178]Hongwei Bran Li, Fernando Navarro, Ivan Ezhov, Amirhossein Bayat, Dhritiman Das, Florian Kofler, Suprosanna Shit, Diana Waldmannstetter, Johannes C. Paetzold, Xiaobin Hu, Benedikt Wiestler, Lucas Zimmer, Tamaz Amiranashvili, Chinmay Prabhakar, Christoph Berger, Jonas Weidner, Michelle Alonso-Basanta, Arif Rashid, Ujjwal Baid, Wesam Adel, Deniz Alis, Bhakti Baheti, Yingbin Bai, Ishaan Bhat, Sabri Can Cetindag, Wenting Chen, Li Cheng, Prasad Dutande, Lara Dular, Mustafa A. Elattar, Ming Feng, Shengbo Gao, Henkjan Huisman, Weifeng Hu, Shubham Innani, Wei Jiat, Davood Karimi, Hugo J. Kuijf, Jin Tae Kwak, Hoang Long Le, Xiang Lia, Huiyan Lin, Tongliang Liu, Jun Ma, Kai Ma, Ting Ma, Ilkay Öksüz, Robbie Holland, Arlindo L. Oliveira, Jimut Bahan Pal, Xuan Pei, Maoying Qiao, Anindo Saha, Raghavendra Selvan, Linlin Shen, João Lourenço Silva, Ziga Spiclin, Sanjay N. Talbar, Dadong Wang, Wei Wang, Xiong Wang, Yin Wang, Ruiling Xia, Kele Xu, Yanwu Yan, Mert Yergin, Shuang Yu, Lingxi Zeng, YingLin Zhang, Jiachen Zhao, Yefeng Zheng, Martin Zukovec, Richard K. G. Do, Anton S. Becker, Amber L. Simpson, Ender Konukoglu, András Jakab, Spyridon Bakas, Leo Joskowicz, Bjoern H. Menze:
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge. CoRR abs/2405.18435 (2024) - [i177]Hongduan Tian, Feng Liu, Tongliang Liu, Bo Du, Yiu-ming Cheung, Bo Han:
MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence. CoRR abs/2405.18786 (2024) - [i176]Yuhao Wu, Jiangchao Yao, Bo Han, Lina Yao, Tongliang Liu:
Unraveling the Impact of Heterophilic Structures on Graph Positive-Unlabeled Learning. CoRR abs/2405.19919 (2024) - [i175]Jiacheng Zhang, Feng Liu, Dawei Zhou, Jingfeng Zhang, Tongliang Liu:
Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training. CoRR abs/2406.00685 (2024) - [i174]Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, Bo Han:
Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection. CoRR abs/2406.00806 (2024) - [i173]Xiaoli Wei, Zhaoqing Wang, Yandong Guo, Chunxia Zhang, Tongliang Liu, Mingming Gong:
Training-Free Robust Interactive Video Object Segmentation. CoRR abs/2406.05485 (2024) - [i172]Qizhou Wang, Bo Han, Puning Yang, Jianing Zhu, Tongliang Liu, Masashi Sugiyama:
Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning. CoRR abs/2406.09179 (2024) - [i171]Tianfu Wang, Li Shen, Qilin Fan, Tong Xu, Tongliang Liu, Hui Xiong:
Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning. CoRR abs/2406.17334 (2024) - [i170]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. CoRR abs/2407.10132 (2024) - 2023
- [j75]Chuang Liu, Yibing Zhan, Baosheng Yu, Liu Liu, Bo Du, Wenbin Hu, Tongliang Liu:
On exploring node-feature and graph-structure diversities for node drop graph pooling. Neural Networks 167: 559-571 (2023) - [j74]Xiaobo Xia, Bo Han, Nannan Wang, Jiankang Deng, Jiatong Li, Yinian Mao, Tongliang Liu:
Extended $T$T: Learning With Mixed Closed-Set and Open-Set Noisy Labels. IEEE Trans. Pattern Anal. Mach. Intell. 45(3): 3047-3058 (2023) - [j73]Xiaoqing Guo, Jie Liu, Tongliang Liu, Yixuan Yuan:
Handling Open-Set Noise and Novel Target Recognition in Domain Adaptive Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(8): 9846-9861 (2023) - [j72]Jinkai Tian, Xiaoyu Sun, Yuxuan Du, Shanshan Zhao, Qing Liu, Kaining Zhang, Wei Yi, Wanrong Huang, Chaoyue Wang, Xingyao Wu, Min-Hsiu Hsieh, Tongliang Liu, Wenjing Yang, Dacheng Tao:
Recent Advances for Quantum Neural Networks in Generative Learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(10): 12321-12340 (2023) - [j71]Shuo Yang, Songhua Wu, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
A Parametrical Model for Instance-Dependent Label Noise. IEEE Trans. Pattern Anal. Mach. Intell. 45(12): 14055-14068 (2023) - [j70]Xiu-Chuan Li, Xiaobo Xia, Fei Zhu, Tongliang Liu, Xu-Yao Zhang, Cheng-Lin Liu:
Dynamics-aware loss for learning with label noise. Pattern Recognit. 144: 109835 (2023) - [j69]Shenghong He, Ruxin Wang, Tongliang Liu, Chao Yi, Xin Jin, Renyang Liu, Wei Zhou:
Type-I Generative Adversarial Attack. IEEE Trans. Dependable Secur. Comput. 20(3): 2593-2606 (2023) - [j68]Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Yixuan Li, Junzhou Huang:
Noise-robust Graph Learning by Estimating and Leveraging Pairwise Interactions. Trans. Mach. Learn. Res. 2023 (2023) - [j67]Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, Howard D. Bondell:
FedDAG: Federated DAG Structure Learning. Trans. Mach. Learn. Res. 2023 (2023) - [j66]Chenhong Zhou, Feng Liu, Chen Gong, Rongfei Zeng, Tongliang Liu, Kwok-Wai Cheung, Bo Han:
KRADA: Known-region-aware Domain Alignment for Open-set Domain Adaptation in Semantic Segmentation. Trans. Mach. Learn. Res. 2023 (2023) - [j65]Shikun Li, Tongliang Liu, Jiyong Tan, Dan Zeng, Shiming Ge:
Trustable Co-Label Learning From Multiple Noisy Annotators. IEEE Trans. Multim. 25: 1045-1057 (2023) - [j64]Jie Ma, Jun Liu, Yaxian Wang, Junjun Li, Tongliang Liu:
Relation-Aware Fine-Grained Reasoning Network for Textbook Question Answering. IEEE Trans. Neural Networks Learn. Syst. 34(1): 15-27 (2023) - [j63]Jingwei Zhang, Tongliang Liu, Dacheng Tao:
An Optimal Transport Analysis on Generalization in Deep Learning. IEEE Trans. Neural Networks Learn. Syst. 34(6): 2842-2853 (2023) - [j62]Yu Yao, Baosheng Yu, Chen Gong, Tongliang Liu:
Understanding How Pretraining Regularizes Deep Learning Algorithms. IEEE Trans. Neural Networks Learn. Syst. 34(9): 5828-5840 (2023) - [c144]Zixuan Hu, Li Shen, Zhenyi Wang, Tongliang Liu, Chun Yuan, Dacheng Tao:
Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning. CVPR 2023: 7736-7745 - [c143]Zhuo Huang, Miaoxi Zhu, Xiaobo Xia, Li Shen, Jun Yu, Chen Gong, Bo Han, Bo Du, Tongliang Liu:
Robust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness Minimization. CVPR 2023: 16175-16185 - [c142]Maoyuan Ye, Jing Zhang, Shanshan Zhao, Juhua Liu, Tongliang Liu, Bo Du, Dacheng Tao:
DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting. CVPR 2023: 19348-19357 - [c141]Shuo Yang, Zhaopan Xu, Kai Wang, Yang You, Hongxun Yao, Tongliang Liu, Min Xu:
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency. CVPR 2023: 19883-19892 - [c140]Xiaobo Xia, Jiankang Deng, Wei Bao, Yuxuan Du, Bo Han, Shiguang Shan, Tongliang Liu:
Holistic Label Correction for Noisy Multi-Label Classification. ICCV 2023: 1483-1493 - [c139]Chengxin Liu, Hao Lu, Zhiguo Cao, Tongliang Liu:
Point-Query Quadtree for Crowd Counting, Localization, and More. ICCV 2023: 1676-1685 - [c138]Xiaobo Xia, Bo Han, Yibing Zhan, Jun Yu, Mingming Gong, Chen Gong, Tongliang Liu:
Combating Noisy Labels with Sample Selection by Mining High-Discrepancy Examples. ICCV 2023: 1833-1843 - [c137]Kaicheng Yang, Jiankang Deng, Xiang An, Jiawei Li, Ziyong Feng, Jia Guo, Jing Yang, Tongliang Liu:
ALIP: Adaptive Language-Image Pre-training with Synthetic Caption. ICCV 2023: 2910-2919 - [c136]Ling-Hao Chen, Jiawei Zhang, Yewen Li, Yiren Pang, Xiaobo Xia, Tongliang Liu:
HumanMAC: Masked Motion Completion for Human Motion Prediction. ICCV 2023: 9510-9521 - [c135]Suqin Yuan, Lei Feng, Tongliang Liu:
Late Stopping: Avoiding Confidently Learning from Mislabeled Examples. ICCV 2023: 16033-16042 - [c134]Huaxi Huang, Hui Kang, Sheng Liu, Olivier Salvado, Thierry Rakotoarivelo, Dadong Wang, Tongliang Liu:
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels. ICCV 2023: 16673-16684 - [c133]Dongting Hu, Zhenkai Zhang, Tingbo Hou, Tongliang Liu, Huan Fu, Mingming Gong:
Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering. ICCV 2023: 17726-17737 - [c132]Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziyong Feng, Jia Guo, Jing Yang, Tongliang Liu:
Unicom: Universal and Compact Representation Learning for Image Retrieval. ICLR 2023 - [c131]Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu:
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style. ICLR 2023 - [c130]Shuxian Liang, Xu Shen, Tongliang Liu, Xian-Sheng Hua:
Contextual Convolutional Networks. ICLR 2023 - [c129]Yong Lin, Renjie Pi, Weizhong Zhang, Xiaobo Xia, Jiahui Gao, Xiao Zhou, Tongliang Liu, Bo Han:
A Holistic View of Label Noise Transition Matrix in Deep Learning and Beyond. ICLR 2023 - [c128]Zhaoqing Wang, Ziyu Chen, Yaqian Li, Yandong Guo, Jun Yu, Mingming Gong, Tongliang Liu:
Mosaic Representation Learning for Self-supervised Visual Pre-training. ICLR 2023 - [c127]Xinbiao Wang, Junyu Liu, Tongliang Liu, Yong Luo, Yuxuan Du, Dacheng Tao:
Symmetric Pruning in Quantum Neural Networks. ICLR 2023 - [c126]Qizhou Wang, Junjie Ye, Feng Liu, Quanyu Dai, Marcus Kalander, Tongliang Liu, Jianye Hao, Bo Han:
Out-of-distribution Detection with Implicit Outlier Transformation. ICLR 2023 - [c125]Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, Tongliang Liu:
Moderate Coreset: A Universal Method of Data Selection for Real-world Data-efficient Deep Learning. ICLR 2023 - [c124]Jianing Zhu, Jiangchao Yao, Tongliang Liu, Quanming Yao, Jianliang Xu, Bo Han:
Combating Exacerbated Heterogeneity for Robust Models in Federated Learning. ICLR 2023 - [c123]