default search action
Dinshaw S. Balsara
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j42]Jaya Agnihotri, Deepak Bhoriya, Harish Kumar, Praveen Chandrashekar, Dinshaw S. Balsara:
Second Order Divergence Constraint Preserving Entropy Stable Finite Difference Schemes for Ideal Two-Fluid Plasma Flow Equations. J. Sci. Comput. 101(2): 46 (2024) - [i13]Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar:
Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws. CoRR abs/2403.01264 (2024) - [i12]Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar:
Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Systems with Non-Conservative Products. CoRR abs/2403.01266 (2024) - [i11]Deepak Bhoriya, Dinshaw S. Balsara, Vladimir Florinski, Harish Kumar:
Going Beyond the MHD Approximation: Physics-Based Numerical Solution of the CGL Equations. CoRR abs/2405.17487 (2024) - [i10]Chetan Singh, Anshu Yadav, Deepak Bhoriya, Harish Kumar, Dinshaw S. Balsara:
Entropy stable finite difference schemes for Chew, Goldberger & Low anisotropic plasma flow equations. CoRR abs/2406.04783 (2024) - [i9]Dinshaw S. Balsara, Deepak Bhoriya, Olindo Zanotti, Michael Dumbser:
Well-balanced high order finite difference WENO schemes for a first-order Z4 formulation of the Einstein field equations. CoRR abs/2406.05450 (2024) - [i8]Jaya Agnihotri, Deepak Bhoriya, Harish Kumar, Praveen Chandrashekar, Dinshaw S. Balsara:
Second order divergence constraint preserving entropy stable finite difference schemes for ideal two-fluid plasma flow equations. CoRR abs/2409.16004 (2024) - 2023
- [j41]Arijit Hazra, Dinshaw S. Balsara, Praveen Chandrashekar, Sudip Kumar Garain:
Multidimensional Generalized Riemann Problem Solver for Maxwell's Equations. J. Sci. Comput. 96(1): 26 (2023) - [i7]Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar:
Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-Conservative Products. CoRR abs/2303.17672 (2023) - 2022
- [i6]Arijit Hazra, Dinshaw S. Balsara, Praveen Chandrashekar, Sudip Kumar Garain:
Multidimensional Generalized Riemann Problem Solver for Maxwell's Equations. CoRR abs/2211.09016 (2022) - [i5]Sethupathy Subramanian, Dinshaw S. Balsara, Deepak Bhoriya, Harish Kumar:
Techniques, Tricks and Algorithms for Efficient GPU-Based Processing of Higher Order Hyperbolic PDEs. CoRR abs/2211.13295 (2022) - 2021
- [j40]Kleiton A. Schneider, José M. Gallardo, Dinshaw S. Balsara, Boniface Nkonga, Carlos Parés:
Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems. J. Comput. Phys. 444: 110547 (2021) - [i4]Dinshaw S. Balsara, Roger Käppeli:
Von Neumann Stability Analysis of DG-like and PNPM-like Schemes for PDEs that have Globally Curl-Preserving Evolution of Vector Fields. CoRR abs/2108.09678 (2021) - 2020
- [j39]Dinshaw S. Balsara, Sudip Garain, Vladimir Florinski, Walter Boscheri:
An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404 (2020) - [j38]Roger Käppeli, Dinshaw S. Balsara, Praveen Chandrashekar, Arijit Hazra:
Optimal, globally constraint-preserving, DG(TD)2 schemes for computational electrodynamics based on two-derivative Runge-Kutta timestepping and multidimensional generalized Riemann problem solvers - A von Neumann stability analysis. J. Comput. Phys. 408: 109238 (2020) - [i3]Dinshaw S. Balsara, Roger Käppeli, Walter Boscheri, Michael Dumbser:
Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design. CoRR abs/2009.03522 (2020)
2010 – 2019
- 2019
- [j37]Dinshaw S. Balsara, Roger Käppeli:
von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell equations using multidimensional Riemann solvers. J. Comput. Phys. 376: 1108-1137 (2019) - [j36]Arijit Hazra, Praveen Chandrashekar, Dinshaw S. Balsara:
Globally constraint-preserving FR/DG scheme for Maxwell's equations at all orders. J. Comput. Phys. 394: 298-328 (2019) - [j35]Walter Boscheri, Dinshaw S. Balsara:
High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO Adaptive-Order reconstruction on unstructured meshes. J. Comput. Phys. 398 (2019) - [j34]Alessandro Fanfarillo, Sudip Kumar Garain, Dinshaw S. Balsara, Dan Nagle:
Resilient computational applications using Coarray Fortran. Parallel Comput. 81: 58-67 (2019) - [i2]Gino I. Montecinos, Dinshaw S. Balsara:
A simplified Cauchy-Kowalewskaya procedure for the implicit solution of generalized Riemann problems of hyperbolic balance laws. CoRR abs/1907.08872 (2019) - 2018
- [j33]Dinshaw S. Balsara, Sudip Garain, Allen Taflove, Gino I. Montecinos:
Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes. J. Comput. Phys. 354: 613-645 (2018) - [j32]Dinshaw S. Balsara, Jiequan Li, Gino I. Montecinos:
An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver. J. Comput. Phys. 375: 1238-1269 (2018) - 2017
- [j31]Dinshaw S. Balsara, Roger Käppeli:
Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers. J. Comput. Phys. 336: 104-127 (2017) - [j30]Dinshaw S. Balsara, Boniface Nkonga:
Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346: 25-48 (2017) - [j29]Dinshaw S. Balsara, Allen Taflove, Sudip Garain, Gino I. Montecinos:
Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes. J. Comput. Phys. 349: 604-635 (2017) - 2016
- [j28]Dinshaw S. Balsara, Jeaniffer Vides, Katharine F. Gurski, Boniface Nkonga, Michael Dumbser, Sudip Garain, Edouard Audit:
A two-dimensional Riemann solver with self-similar sub-structure - Alternative formulation based on least squares projection. J. Comput. Phys. 304: 138-161 (2016) - [j27]Michael Dumbser, Dinshaw S. Balsara:
A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304: 275-319 (2016) - [j26]Dinshaw S. Balsara, Gino I. Montecinos, Eleuterio F. Toro:
Exploring various flux vector splittings for the magnetohydrodynamic system. J. Comput. Phys. 311: 1-21 (2016) - [j25]Dinshaw S. Balsara, Jinho Kim:
A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312: 357-384 (2016) - [j24]Dinshaw S. Balsara, Takanobu Amano, Sudip Garain, Jinho Kim:
A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. J. Comput. Phys. 318: 169-200 (2016) - [j23]Dinshaw S. Balsara, Sudip Garain, Chi-Wang Shu:
An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326: 780-804 (2016) - 2015
- [j22]Dinshaw S. Balsara, Michael Dumbser:
Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287: 269-292 (2015) - [j21]Dinshaw S. Balsara:
Three dimensional HLL Riemann solver for conservation laws on structured meshes; Application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295: 1-23 (2015) - [j20]Sudip Garain, Dinshaw S. Balsara, John K. Reid:
Comparing Coarray Fortran (CAF) with MPI for several structured mesh PDE applications. J. Comput. Phys. 297: 237-253 (2015) - [j19]Dinshaw S. Balsara, Michael Dumbser:
Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299: 687-715 (2015) - 2014
- [j18]Chad D. Meyer, Dinshaw S. Balsara, Tariq D. Aslam:
A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations. J. Comput. Phys. 257: 594-626 (2014) - [j17]Dinshaw S. Balsara, Michael Dumbser, Rémi Abgrall:
Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows. J. Comput. Phys. 261: 172-208 (2014) - [j16]Walter Boscheri, Dinshaw S. Balsara, Michael Dumbser:
Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267: 112-138 (2014) - [j15]Jinho Kim, Dinshaw S. Balsara:
A stable HLLC Riemann solver for relativistic magnetohydrodynamics. J. Comput. Phys. 270: 634-639 (2014) - [j14]Dinshaw S. Balsara:
Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277: 163-200 (2014) - 2013
- [j13]Dinshaw S. Balsara, Chad D. Meyer, Michael Dumbser, Huijing Du, Zhiliang Xu:
Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods. J. Comput. Phys. 235: 934-969 (2013) - [j12]Michael Dumbser, Olindo Zanotti, Arturo Hidalgo, Dinshaw S. Balsara:
ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248: 257-286 (2013) - 2012
- [j11]Dinshaw S. Balsara:
A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231(22): 7476-7503 (2012) - [j10]Dinshaw S. Balsara:
Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231(22): 7504-7517 (2012) - [i1]Michael Dumbser, Olindo Zanotti, Arturo Hidalgo, Dinshaw S. Balsara:
ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement. CoRR abs/1212.3585 (2012) - 2010
- [j9]Dinshaw S. Balsara:
Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229(6): 1970-1993 (2010)
2000 – 2009
- 2009
- [j8]Dinshaw S. Balsara, Tobias Rumpf, Michael Dumbser, Claus-Dieter Munz:
Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7): 2480-2516 (2009) - [j7]Dinshaw S. Balsara:
Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228(14): 5040-5056 (2009) - 2008
- [j6]Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, Claus-Dieter Munz:
A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18): 8209-8253 (2008) - 2007
- [j5]Dinshaw S. Balsara, Christoph Altmann, Claus-Dieter Munz, Michael Dumbser:
A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226(1): 586-620 (2007) - [j4]Arne Taube, Michael Dumbser, Dinshaw S. Balsara, Claus-Dieter Munz:
Arbitrary High-Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations. J. Sci. Comput. 30(3): 441-464 (2007) - 2001
- [j3]Dinshaw S. Balsara, Charles D. Norton:
Highly parallel structured adaptive mesh refinement using parallel language-based approaches. Parallel Comput. 27(1-2): 37-70 (2001)
1990 – 1999
- 1997
- [j2]Xin Yuan, Charles A. Salisbury, Dinshaw S. Balsara, Rami G. Melhem:
A Load Balancing Package on Distributed Memory Systems and its Application to Particle-Particle Particle-Mesh (P3M) Methods. Parallel Comput. 23(10): 1525-1544 (1997) - [c2]Dinshaw S. Balsara, Daniel J. Quinlan:
Parallel Object-Oriented Adaptive Mesh Refinement. PP 1997 - 1996
- [j1]Philip L. Roe, Dinshaw S. Balsara:
Notes on the Eigensystem of Magnetohydrodynamics. SIAM J. Appl. Math. 56(1): 57-67 (1996) - [c1]Xin Yuan, B. He, Dinshaw S. Balsara, Rami G. Melhem:
A Load Balancing Package for Domain Decomposition on Distributed Memory Systems. HPCN Europe 1996: 547-554
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 20:31 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint