default search action
Ser-Nam Lim
Person information
- affiliation: Facebook AI, New York, NY, USA
- affiliation: Avitas Systems, GE Venture, Boston, MA, USA
- affiliation: GE Global Research, Niskayuna, NY, USA
- affiliation: Cognex Corp., Natick, MA, USA
- affiliation (PhD 2006): University of Maryland, College Park, MD, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c101]Shuaiyi Huang, Saksham Suri, Kamal Gupta, Sai Saketh Rambhatla, Ser-Nam Lim, Abhinav Shrivastava:
UVIS: Unsupervised Video Instance Segmentation. CVPR Workshops 2024: 2682-2692 - [c100]Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava, Ser-Nam Lim:
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding. CVPR 2024: 13504-13514 - [c99]Shraman Pramanick, Guangxing Han, Rui Hou, Sayan Nag, Ser-Nam Lim, Nicolas Ballas, Qifan Wang, Rama Chellappa, Amjad Almahairi:
Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model. CVPR 2024: 14076-14088 - [c98]Khoi Pham, Chuong Huynh, Ser-Nam Lim, Abhinav Shrivastava:
Composing Object Relations and Attributes for Image-Text Matching. CVPR 2024: 14354-14363 - [c97]Zhuoling Li, Xiaogang Xu, Ser-Nam Lim, Hengshuang Zhao:
UniMODE: Unified Monocular 3D Object Detection. CVPR 2024: 16561-16570 - [c96]Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, Ser-Nam Lim:
Object Recognition as Next Token Prediction. CVPR 2024: 16645-16656 - [c95]Young Kyun Jang, Donghyun Kim, Zihang Meng, Dat Huynh, Ser-Nam Lim:
Visual Delta Generator with Large Multi-Modal Models for Semi-Supervised Composed Image Retrieval. CVPR 2024: 16805-16814 - [c94]Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, Ser-Nam Lim:
On the Robustness of Large Multimodal Models Against Image Adversarial Attacks. CVPR 2024: 24625-24634 - [c93]Guangxing Han, Ser-Nam Lim:
Few-Shot Object Detection with Foundation Models. CVPR 2024: 28608-28618 - [c92]Hao Chen, Saining Xie, Ser-Nam Lim, Abhinav Shrivastava:
Fast Encoding and Decoding for Implicit Video Representation. ECCV (39) 2024: 402-418 - [c91]Xiao Liu, Guangyi Chen, Yansong Tang, Guangrun Wang, Xiao-Ping Zhang, Ser-Nam Lim:
Language-Free Compositional Action Generation via Decoupling Refinement. ICASSP 2024: 2910-2914 - [c90]Gaurav Shrivastava, Ser-Nam Lim, Abhinav Shrivastava:
Video Decomposition Prior: Editing Videos Layer by Layer. ICLR 2024 - [i109]Zhuoling Li, Xiaogang Xu, Ser-Nam Lim, Hengshuang Zhao:
UniMODE: Unified Monocular 3D Object Detection. CoRR abs/2402.18573 (2024) - [i108]Rukhshanda Hussain, Hui Xian Grace Lim, Borchun Chen, Mubarak Shah, Ser Nam Lim:
FSViewFusion: Few-Shots View Generation of Novel Objects. CoRR abs/2403.06394 (2024) - [i107]Lan Wang, Vishnu Boddeti, Sernam Lim:
Action Reimagined: Text-to-Pose Video Editing for Dynamic Human Actions. CoRR abs/2403.07198 (2024) - [i106]Dongmin Park, Zhaofang Qian, Guangxing Han, Ser-Nam Lim:
Mitigating Dialogue Hallucination for Large Multi-modal Models via Adversarial Instruction Tuning. CoRR abs/2403.10492 (2024) - [i105]Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava, Ser-Nam Lim:
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding. CoRR abs/2404.05726 (2024) - [i104]Young Kyun Jang, Donghyun Kim, Zihang Meng, Dat Huynh, Ser-Nam Lim:
Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval. CoRR abs/2404.15516 (2024) - [i103]Young Kyun Jang, Dat Huynh, Ashish Shah, Wen-Kai Chen, Ser-Nam Lim:
Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval. CoRR abs/2405.00571 (2024) - [i102]Young Kyun Jang, Ser-Nam Lim:
Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models. CoRR abs/2405.14715 (2024) - [i101]Young Kyun Jang, Donghyun Kim, Ser-Nam Lim:
Distilling Vision-Language Pretraining for Efficient Cross-Modal Retrieval. CoRR abs/2405.14726 (2024) - [i100]Zhuoling Li, Xiaogang Xu, Zhenhua Xu, Ser-Nam Lim, Hengshuang Zhao:
LARM: Large Auto-Regressive Model for Long-Horizon Embodied Intelligence. CoRR abs/2405.17424 (2024) - [i99]Shuaiyi Huang, Saksham Suri, Kamal Gupta, Sai Saketh Rambhatla, Ser-Nam Lim, Abhinav Shrivastava:
UVIS: Unsupervised Video Instance Segmentation. CoRR abs/2406.06908 (2024) - [i98]Khoi Pham, Chuong Huynh, Ser-Nam Lim, Abhinav Shrivastava:
Composing Object Relations and Attributes for Image-Text Matching. CoRR abs/2406.11820 (2024) - [i97]Hui Xian Grace Lim, Xuanming Cui, Yogesh S. Rawat, Ser-Nam Lim:
AirSketch: Generative Motion to Sketch. CoRR abs/2407.08906 (2024) - [i96]Amin Karimi Monsefi, Kishore Prakash Sailaja, Ali Alilooee, Ser-Nam Lim, Rajiv Ramnath:
DetailCLIP: Detail-Oriented CLIP for Fine-Grained Tasks. CoRR abs/2409.06809 (2024) - [i95]Amin Karimi Monsefi, Mengxi Zhou, Nastaran Karimi Monsefi, Ser-Nam Lim, Wei-Lun Chao, Rajiv Ramnath:
Frequency-Guided Masking for Enhanced Vision Self-Supervised Learning. CoRR abs/2409.10362 (2024) - [i94]Hao Chen, Saining Xie, Ser-Nam Lim, Abhinav Shrivastava:
Fast Encoding and Decoding for Implicit Video Representation. CoRR abs/2409.19429 (2024) - 2023
- [c89]Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
Sample-Dependent Adaptive Temperature Scaling for Improved Calibration. AAAI 2023: 14919-14926 - [c88]Shishira R. Maiya, Max Ehrlich, Vatsal Agarwal, Ser-Nam Lim, Tom Goldstein, Abhinav Shrivastava:
Unifying the Harmonic Analysis of Adversarial Attacks and Robustness. BMVC 2023: 620-621 - [c87]Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K. Dokania, Philip H. S. Torr, Ser-Nam Lim, Bernard Ghanem, Adel Bibi:
Computationally Budgeted Continual Learning: What Does Matter? CVPR 2023: 3698-3707 - [c86]Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen, Shuaiyi Huang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
Towards Scalable Neural Representation for Diverse Videos. CVPR 2023: 6132-6142 - [c85]Hao Chen, Matthew Gwilliam, Ser-Nam Lim, Abhinav Shrivastava:
HNeRV: A Hybrid Neural Representation for Videos. CVPR 2023: 10270-10279 - [c84]Zhenyu Wang, Yali Li, Xi Chen, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao, Shengjin Wang:
Detecting Everything in the Open World: Towards Universal Object Detection. CVPR 2023: 11433-11443 - [c83]Jishnu Mukhoti, Tsung-Yu Lin, Omid Poursaeed, Rui Wang, Ashish Shah, Philip H. S. Torr, Ser-Nam Lim:
Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learning. CVPR 2023: 19413-19423 - [c82]A. Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, Philip H. S. Torr:
TIPI: Test Time Adaptation with Transformation Invariance. CVPR 2023: 24162-24171 - [c81]Xi Chen, Shuang Li, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao:
Open-vocabulary Panoptic Segmentation with Embedding Modulation. ICCV 2023: 1141-1150 - [c80]Yifei Zhou, Zilu Li, Abhinav Shrivastava, Hengshuang Zhao, Antonio Torralba, Tai-Peng Tian, Ser-Nam Lim:
BT2: Backward-compatible Training with Basis Transformation. ICCV 2023: 11195-11204 - [c79]Hasan Abed Al Kader Hammoud, Ameya Prabhu, Ser-Nam Lim, Philip H. S. Torr, Adel Bibi, Bernard Ghanem:
Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right? ICCV 2023: 18806-18815 - [c78]Mohamed Afham, Satya Narayan Shukla, Omid Poursaeed, Pengchuan Zhang, Ashish Shah, Sernam Lim:
Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for Long-form Video Understanding. ICCV (Workshops) 2023: 1181-1186 - [c77]Jishnu Mukhoti, Tsung-Yu Lin, Bor-Chun Chen, Ashish Shah, Philip H. S. Torr, Puneet K. Dokania, Ser-Nam Lim:
Raising the Bar on the Evaluation of Out-of-Distribution Detection. ICCV (Workshops) 2023: 4367-4377 - [c76]Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip H. S. Torr, Ser-Nam Lim:
Graph Inductive Biases in Transformers without Message Passing. ICML 2023: 23321-23337 - [c75]Isay Katsman, Eric Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser Nam Lim, Christopher De Sa:
Riemannian Residual Neural Networks. NeurIPS 2023 - [c74]Gaurav Shrivastava, Ser Nam Lim, Abhinav Shrivastava:
Video Dynamics Prior: An Internal Learning Approach for Robust Video Enhancements. NeurIPS 2023 - [c73]Yifei Zhou, Juntao Ren, Fengyu Li, Ramin Zabih, Ser Nam Lim:
Test-Time Distribution Normalization for Contrastively Learned Visual-language Models. NeurIPS 2023 - [i93]Seonguk Seo, Mustafa Gökhan Uzunbas, Bohyung Han, Sara Cao, Joena Zhang, Tai-Peng Tian, Ser-Nam Lim:
Online Backfilling with No Regret for Large-Scale Image Retrieval. CoRR abs/2301.03767 (2023) - [i92]Yifei Zhou, Juntao Ren, Fengyu Li, Ramin Zabih, Ser-Nam Lim:
Distribution Normalization: An "Effortless" Test-Time Augmentation for Contrastively Learned Visual-language Models. CoRR abs/2302.11084 (2023) - [i91]Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K. Dokania, Philip H. S. Torr, Ser-Nam Lim, Bernard Ghanem, Adel Bibi:
Computationally Budgeted Continual Learning: What Does Matter? CoRR abs/2303.11165 (2023) - [i90]Xi Chen, Yau Shing Jonathan Cheung, Ser-Nam Lim, Hengshuang Zhao:
ScribbleSeg: Scribble-based Interactive Image Segmentation. CoRR abs/2303.11320 (2023) - [i89]Xi Chen, Shuang Li, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao:
Open-vocabulary Panoptic Segmentation with Embedding Modulation. CoRR abs/2303.11324 (2023) - [i88]Zhenyu Wang, Yali Li, Xi Chen, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao, Shengjin Wang:
Detecting Everything in the Open World: Towards Universal Object Detection. CoRR abs/2303.11749 (2023) - [i87]Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen, Shuaiyi Huang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
Towards Scalable Neural Representation for Diverse Videos. CoRR abs/2303.14124 (2023) - [i86]Zhuoling Li, Chuanrui Zhang, Wei-Chiu Ma, Yipin Zhou, Linyan Huang, Haoqian Wang, Ser-Nam Lim, Hengshuang Zhao:
VoxelFormer: Bird's-Eye-View Feature Generation based on Dual-view Attention for Multi-view 3D Object Detection. CoRR abs/2304.01054 (2023) - [i85]Hao Chen, Matthew Gwilliam, Ser-Nam Lim, Abhinav Shrivastava:
HNeRV: A Hybrid Neural Representation for Videos. CoRR abs/2304.02633 (2023) - [i84]Jiani Huang, Ziyang Li, David Jacobs, Mayur Naik, Ser-Nam Lim:
LASER: Neuro-Symbolic Learning of Semantic Video Representations. CoRR abs/2304.07647 (2023) - [i83]Hasan Abed Al Kader Hammoud, Ameya Prabhu, Ser-Nam Lim, Philip H. S. Torr, Adel Bibi, Bernard Ghanem:
Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right? CoRR abs/2305.09275 (2023) - [i82]Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip H. S. Torr, Ser-Nam Lim:
Graph Inductive Biases in Transformers without Message Passing. CoRR abs/2305.17589 (2023) - [i81]Xiao Liu, Guangyi Chen, Yansong Tang, Guangrun Wang, Ser-Nam Lim:
Language-free Compositional Action Generation via Decoupling Refinement. CoRR abs/2307.03538 (2023) - [i80]Mohamed Afham, Satya Narayan Shukla, Omid Poursaeed, Pengchuan Zhang, Ashish Shah, Sernam Lim:
Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for Long-form Video Understanding. CoRR abs/2309.11569 (2023) - [i79]Isay Katsman, Eric Ming Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim, Christopher De Sa:
Riemannian Residual Neural Networks. CoRR abs/2310.10013 (2023) - [i78]Ameya Prabhu, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip H. S. Torr, Adel Bibi:
From Categories to Classifier: Name-Only Continual Learning by Exploring the Web. CoRR abs/2311.11293 (2023) - [i77]Botos Csaba, Wenxuan Zhang, Matthias Müller, Ser-Nam Lim, Mohamed Elhoseiny, Philip H. S. Torr, Adel Bibi:
Label Delay in Continual Learning. CoRR abs/2312.00923 (2023) - [i76]Piotr Teterwak, Ximeng Sun, Bryan A. Plummer, Kate Saenko, Ser-Nam Lim:
CLAMP: Contrastive LAnguage Model Prompt-tuning. CoRR abs/2312.01629 (2023) - [i75]Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, Ser-Nam Lim:
Object Recognition as Next Token Prediction. CoRR abs/2312.02142 (2023) - [i74]Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, Ser-Nam Lim:
On the Robustness of Large Multimodal Models Against Image Adversarial Attacks. CoRR abs/2312.03777 (2023) - [i73]Gaurav Shrivastava, Ser-Nam Lim, Abhinav Shrivastava:
Video Dynamics Prior: An Internal Learning Approach for Robust Video Enhancements. CoRR abs/2312.07835 (2023) - [i72]Shraman Pramanick, Guangxing Han, Rui Hou, Sayan Nag, Ser-Nam Lim, Nicolas Ballas, Qifan Wang, Rama Chellappa, Amjad Almahairi:
Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model. CoRR abs/2312.12423 (2023) - [i71]Ping-yeh Chiang, Yipin Zhou, Omid Poursaeed, Satya Narayan Shukla, Ashish Shah, Tom Goldstein, Ser-Nam Lim:
Universal Pyramid Adversarial Training for Improved ViT Performance. CoRR abs/2312.16339 (2023) - 2022
- [c72]Hao Chen, Matthew Gwilliam, Bo He, Ser-Nam Lim, Abhinav Shrivastava:
CNeRV: Content-adaptive Neural Representation for Visual Data. BMVC 2022: 510 - [c71]Boyi Li, Serge J. Belongie, Ser-Nam Lim, Abe Davis:
Neural Image Recolorization for Creative Domains. CVPR Workshops 2022: 2225-2229 - [c70]Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, Yu-Gang Jiang:
ObjectFormer for Image Manipulation Detection and Localization. CVPR 2022: 2354-2363 - [c69]Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, Ser-Nam Lim:
AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. CVPR 2022: 12299-12308 - [c68]Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, Antonio Torralba:
Totems: Physical Objects for Verifying Visual Integrity. ECCV (14) 2022: 164-180 - [c67]Zihang Meng, David Yang, Xuefei Cao, Ashish Shah, Ser-Nam Lim:
Object-Centric Unsupervised Image Captioning. ECCV (36) 2022: 219-235 - [c66]Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, Antonio Torralba:
MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning. ECCV (27) 2022: 304-321 - [c65]Tohar Lukov, Na Zhao, Gim Hee Lee, Ser-Nam Lim:
Teaching with Soft Label Smoothing for Mitigating Noisy Labels in Facial Expressions. ECCV (12) 2022: 648-665 - [c64]Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, Ser-Nam Lim:
Visual Prompt Tuning. ECCV (33) 2022: 709-727 - [c63]Botos Csaba, Adel Bibi, Yanwei Li, Philip H. S. Torr, Ser-Nam Lim:
Diversified Dynamic Routing for Vision Tasks. ECCV Workshops (4) 2022: 756-772 - [c62]Junke Wang, Zuxuan Wu, Wenhao Ouyang, Xintong Han, Jingjing Chen, Yu-Gang Jiang, Ser-Nam Lim:
M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection. ICMR 2022: 615-623 - [c61]A. Tuan Nguyen, Philip H. S. Torr, Ser Nam Lim:
FedSR: A Simple and Effective Domain Generalization Method for Federated Learning. NeurIPS 2022 - [c60]Francesco Pinto, Harry Yang, Ser Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness. NeurIPS 2022 - [c59]Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou, Ser-Nam Lim, Jiwen Lu:
HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions. NeurIPS 2022 - [c58]Kai Sheng Tai, Tai-Peng Tian, Ser Nam Lim:
Spartan: Differentiable Sparsity via Regularized Transportation. NeurIPS 2022 - [c57]Ze Wang, Yipin Zhou, Rui Wang, Tsung-Yu Lin, Ashish Shah, Ser Nam Lim:
Few-Shot Fast-Adaptive Anomaly Detection. NeurIPS 2022 - [c56]Yifei Zhou, Renyu Li, Hayden Housen, Ser Nam Lim:
GAPX: Generalized Autoregressive Paraphrase-Identification X. NeurIPS 2022 - [i70]A. Tuan Nguyen, Ser Nam Lim, Philip H. S. Torr:
Task-Agnostic Robust Representation Learning. CoRR abs/2203.07596 (2022) - [i69]Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, Ser-Nam Lim:
Visual Prompt Tuning. CoRR abs/2203.12119 (2022) - [i68]Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, Yu-Gang Jiang:
ObjectFormer for Image Manipulation Detection and Localization. CoRR abs/2203.14681 (2022) - [i67]Kennard Ng, Ser-Nam Lim, Gim Hee Lee:
VRAG: Region Attention Graphs for Content-Based Video Retrieval. CoRR abs/2205.09068 (2022) - [i66]Kai Sheng Tai, Tai-Peng Tian, Ser-Nam Lim:
Spartan: Differentiable Sparsity via Regularized Transportation. CoRR abs/2205.14107 (2022) - [i65]Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness. CoRR abs/2206.14502 (2022) - [i64]Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
Sample-dependent Adaptive Temperature Scaling for Improved Calibration. CoRR abs/2207.06211 (2022) - [i63]Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou, Ser-Nam Lim, Jiwen Lu:
HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions. CoRR abs/2207.14284 (2022) - [i62]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
Benchmarking Validation Methods for Unsupervised Domain Adaptation. CoRR abs/2208.07360 (2022) - [i61]Jishnu Mukhoti, Tsung-Yu Lin, Bor-Chun Chen, Ashish Shah, Philip H. S. Torr, Puneet K. Dokania, Ser-Nam Lim:
Raising the Bar on the Evaluation of Out-of-Distribution Detection. CoRR abs/2209.11960 (2022) - [i60]Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, Antonio Torralba:
Totems: Physical Objects for Verifying Visual Integrity. CoRR abs/2209.13032 (2022) - [i59]Botos Csaba, Adel Bibi, Yanwei Li, Philip H. S. Torr, Ser-Nam Lim:
Diversified Dynamic Routing for Vision Tasks. CoRR abs/2209.13071 (2022) - [i58]Yifei Zhou, Renyu Li, Hayden Housen, Ser-Nam Lim:
GAPX: Generalized Autoregressive Paraphrase-Identification X. CoRR abs/2210.01979 (2022) - [i57]Yifei Zhou, Zilu Li, Abhinav Shrivastava, Hengshuang Zhao, Antonio Torralba, Tai-Peng Tian, Ser-Nam Lim:
BT2: Backward-compatible Training with Basis Transformation. CoRR abs/2211.03989 (2022) - [i56]Hao Chen, Matthew Gwilliam, Bo He, Ser-Nam Lim, Abhinav Shrivastava:
CNeRV: Content-adaptive Neural Representation for Visual Data. CoRR abs/2211.10421 (2022) - [i55]Peirong Liu, Rui Wang, Pengchuan Zhang, Omid Poursaeed, Yipin Zhou, Xuefei Cao, Sreya Dutta Roy, Ashish Shah, Ser-Nam Lim:
A Unified Model for Tracking and Image-Video Detection Has More Power. CoRR abs/2211.11077 (2022) - [i54]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
PyTorch Adapt. CoRR abs/2211.15673 (2022) - [i53]Jishnu Mukhoti, Tsung-Yu Lin, Omid Poursaeed, Rui Wang, Ashish Shah, Philip H. S. Torr, Ser-Nam Lim:
Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learning. CoRR abs/2212.04994 (2022) - 2021
- [c55]Peng Zhou, Ning Yu, Zuxuan Wu, Larry Davis, Abhinav Shrivastava, Ser-Nam Lim:
Deep Video Inpainting Detection. BMVC 2021: 35 - [c54]Bo He, Xitong Yang, Zuxuan Wu, Hao Chen, Ser-Nam Lim, Abhinav Shrivastava:
GTA: Global Temporal Attention for Video Action Understanding. BMVC 2021: 292 - [c53]Boyi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie, Kilian Q. Weinberger:
On Feature Normalization and Data Augmentation. CVPR 2021: 12383-12392 - [c52]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Intentonomy: A Dataset and Study Towards Human Intent Understanding. CVPR 2021: 12986-12996 - [c51]Bor-Chun Chen, Zuxuan Wu, Larry S. Davis, Ser-Nam Lim:
Efficient Object Embedding for Spliced Image Retrieval. CVPR 2021: 14965-14975 - [c50]Shir Gur, Natalia Neverova, Christopher Stauffer, Ser-Nam Lim, Douwe Kiela, Austin Reiter:
Cross-Modal Retrieval Augmentation for Multi-Modal Classification. EMNLP (Findings) 2021: 111-123 - [c49]Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi, Claire Cardie:
When in Doubt: Improving Classification Performance with Alternating Normalization. EMNLP (Findings) 2021: 1716-1723 - [c48]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Exploring Visual Engagement Signals for Representation Learning. ICCV 2021: 4186-4197 - [c47]Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivastava, Kilian Q. Weinberger, Wei-Lun Chao, Ser-Nam Lim:
Deep Co-Training with Task Decomposition for Semi-Supervised Domain Adaptation. ICCV 2021: 8886-8896 - [c46]Yipin Zhou, Ser-Nam Lim:
Joint Audio-Visual Deepfake Detection. ICCV 2021: 14780-14789 - [c45]Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge J. Belongie, Ser-Nam Lim:
Robustness and Generalization via Generative Adversarial Training. ICCV 2021: 15691-15700 - [c44]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Analyzing and Mitigating JPEG Compression Defects in Deep Learning. ICCVW 2021: 2357-2367 - [c43]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models out-performs Graph Neural Networks. ICLR 2021 - [c42]Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Equivariant Manifold Flows. NeurIPS 2021: 10600-10612 - [c41]Keyu Tian, Chen Lin, Ser-Nam Lim, Wanli Ouyang, Puneet K. Dokania, Philip H. S. Torr:
A Continuous Mapping For Augmentation Design. NeurIPS 2021: 13732-13743 - [c40]Toru Lin, Jacob Huh, Christopher Stauffer, Ser-Nam Lim, Phillip Isola:
Learning to Ground Multi-Agent Communication with Autoencoders. NeurIPS 2021: 15230-15242 - [c39]Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim:
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. NeurIPS 2021: 20887-20902 - [c38]Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
NeRV: Neural Representations for Videos. NeurIPS 2021: 21557-21568 - [i52]Peng Zhou, Ning Yu, Zuxuan Wu, Larry S. Davis, Abhinav Shrivastava, Ser-Nam Lim:
Deep Video Inpainting Detection. CoRR abs/2101.11080 (2021) - [i51]Zuxuan Wu, Tom Goldstein, Larry S. Davis, Ser-Nam Lim:
THAT: Two Head Adversarial Training for Improving Robustness at Scale. CoRR abs/2103.13612 (2021) - [i50]Derek Lim, Xiuyu Li, Felix Hohne, Ser-Nam Lim:
New Benchmarks for Learning on Non-Homophilous Graphs. CoRR abs/2104.01404 (2021) - [i49]Sethuraman Sankaran, David Yang, Ser-Nam Lim:
Multimodal Fusion Refiner Networks. CoRR abs/2104.03435 (2021) - [i48]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Exploring Visual Engagement Signals for Representation Learning. CoRR abs/2104.07767 (2021) - [i47]Shir Gur, Natalia Neverova, Christopher Stauffer, Ser-Nam Lim, Douwe Kiela, Austin Reiter:
Cross-Modal Retrieval Augmentation for Multi-Modal Classification. CoRR abs/2104.08108 (2021) - [i46]Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, Austin R. Benson:
Edge Proposal Sets for Link Prediction. CoRR abs/2106.15810 (2021) - [i45]Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Equivariant Manifold Flows. CoRR abs/2107.08596 (2021) - [i44]Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge J. Belongie, Ser-Nam Lim:
Robustness and Generalization via Generative Adversarial Training. CoRR abs/2109.02765 (2021) - [i43]Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi, Claire Cardie:
When in Doubt: Improving Classification Performance with Alternating Normalization. CoRR abs/2109.13449 (2021) - [i42]Peirong Liu, Rui Wang, Xuefei Cao, Yipin Zhou, Ashish Shah, Maxime Oquab, Camille Couprie, Ser-Nam Lim:
Self-appearance-aided Differential Evolution for Motion Transfer. CoRR abs/2110.04658 (2021) - [i41]Xuefeng Hu, M. Gökhan Uzunbas, Sirius Chen, Rui Wang, Ashish Shah, Ram Nevatia, Ser-Nam Lim:
MixNorm: Test-Time Adaptation Through Online Normalization Estimation. CoRR abs/2110.11478 (2021) - [i40]Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
NeRV: Neural Representations for Videos. CoRR abs/2110.13903 (2021) - [i39]Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim:
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. CoRR abs/2110.14446 (2021) - [i38]Toru Lin, Minyoung Huh, Christopher Stauffer, Ser-Nam Lim, Phillip Isola:
Learning to Ground Multi-Agent Communication with Autoencoders. CoRR abs/2110.15349 (2021) - [i37]Shishira R. Maiya, Max Ehrlich, Vatsal Agarwal, Ser-Nam Lim, Tom Goldstein, Abhinav Shrivastava:
A Frequency Perspective of Adversarial Robustness. CoRR abs/2111.00861 (2021) - [i36]Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, Ser-Nam Lim:
AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. CoRR abs/2111.15668 (2021) - [i35]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
Unsupervised Domain Adaptation: A Reality Check. CoRR abs/2111.15672 (2021) - [i34]Zihang Meng, David Yang, Xuefei Cao, Ashish Shah, Ser-Nam Lim:
Object-Centric Unsupervised Image Captioning. CoRR abs/2112.00969 (2021) - [i33]Menglin Jia, Bor-Chun Chen, Zuxuan Wu, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Rethinking Nearest Neighbors for Visual Classification. CoRR abs/2112.08459 (2021) - 2020
- [c37]Peng Zhou, Bor-Chun Chen, Xintong Han, Mahyar Najibi, Abhinav Shrivastava, Ser-Nam Lim, Larry Davis:
Generate, Segment, and Refine: Towards Generic Manipulation Segmentation. AAAI 2020: 13058-13065 - [c36]Chao Yang, Ser-Nam Lim:
One-Shot Domain Adaptation for Face Generation. CVPR 2020: 5920-5929 - [c35]Zuxuan Wu, Ser-Nam Lim, Larry S. Davis, Tom Goldstein:
Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. ECCV (4) 2020: 1-17 - [c34]Lucy Chai, David Bau, Ser-Nam Lim, Phillip Isola:
What Makes Fake Images Detectable? Understanding Properties that Generalize. ECCV (26) 2020: 103-120 - [c33]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Quantization Guided JPEG Artifact Correction. ECCV (8) 2020: 293-309 - [c32]Luyu Yang, Yogesh Balaji, Ser-Nam Lim, Abhinav Shrivastava:
Curriculum Manager for Source Selection in Multi-source Domain Adaptation. ECCV (14) 2020: 608-624 - [c31]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
A Metric Learning Reality Check. ECCV (25) 2020: 681-699 - [c30]Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge J. Belongie, Ser-Nam Lim, Christopher De Sa:
Differentiating through the Fréchet Mean. ICML 2020: 6393-6403 - [c29]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Better Set Representations For Relational Reasoning. NeurIPS 2020 - [c28]Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Neural Manifold Ordinary Differential Equations. NeurIPS 2020 - [c27]Shruti Agarwal, Hany Farid, Tarek El-Gaaly, Ser-Nam Lim:
Detecting Deep-Fake Videos from Appearance and Behavior. WIFS 2020: 1-6 - [i32]Boyi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie, Kilian Q. Weinberger:
On Feature Normalization and Data Augmentation. CoRR abs/2002.11102 (2020) - [i31]Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge J. Belongie, Ser-Nam Lim, Christopher De Sa:
Differentiating through the Fréchet Mean. CoRR abs/2003.00335 (2020) - [i30]Austin Reiter, Menglin Jia, Pu Yang, Ser-Nam Lim:
Deep Multi-Modal Sets. CoRR abs/2003.01607 (2020) - [i29]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Set-Structured Latent Representations. CoRR abs/2003.04448 (2020) - [i28]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
A Metric Learning Reality Check. CoRR abs/2003.08505 (2020) - [i27]Chao Yang, Ser-Nam Lim:
One-Shot Domain Adaptation For Face Generation. CoRR abs/2003.12869 (2020) - [i26]Max Ehrlich, Ser-Nam Lim, Larry Davis, Abhinav Shrivastava:
Quantization Guided JPEG Artifact Correction. CoRR abs/2004.09320 (2020) - [i25]Shruti Agarwal, Tarek El-Gaaly, Hany Farid, Ser-Nam Lim:
Detecting Deep-Fake Videos from Appearance and Behavior. CoRR abs/2004.14491 (2020) - [i24]Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Neural Manifold Ordinary Differential Equations. CoRR abs/2006.10254 (2020) - [i23]Luyu Yang, Yogesh Balaji, Ser-Nam Lim, Abhinav Shrivastava:
Curriculum Manager for Source Selection in Multi-Source Domain Adaptation. CoRR abs/2007.01261 (2020) - [i22]Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivastava, Kilian Q. Weinberger, Wei-Lun Chao, Ser-Nam Lim:
MiCo: Mixup Co-Training for Semi-Supervised Domain Adaptation. CoRR abs/2007.12684 (2020) - [i21]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
PyTorch Metric Learning. CoRR abs/2008.09164 (2020) - [i20]Lucy Chai, David Bau, Ser-Nam Lim, Phillip Isola:
What makes fake images detectable? Understanding properties that generalize. CoRR abs/2008.10588 (2020) - [i19]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. CoRR abs/2010.13993 (2020) - [i18]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Intentonomy: a Dataset and Study towards Human Intent Understanding. CoRR abs/2011.05558 (2020) - [i17]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Analyzing and Mitigating Compression Defects in Deep Learning. CoRR abs/2011.08932 (2020) - [i16]Bo He, Xitong Yang, Zuxuan Wu, Hao Chen, Ser-Nam Lim, Abhinav Shrivastava:
GTA: Global Temporal Attention for Video Action Understanding. CoRR abs/2012.08510 (2020)
2010 – 2019
- 2019
- [c26]Qian Huang, Isay Katsman, Zeqi Gu, Horace He, Serge J. Belongie, Ser-Nam Lim:
Enhancing Adversarial Example Transferability With an Intermediate Level Attack. ICCV 2019: 4732-4741 - [c25]Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry Davis, Jun Li, Jian Yang, Ser-Nam Lim:
Cross-X Learning for Fine-Grained Visual Categorization. ICCV 2019: 8241-8250 - [i15]Bor-Chun Chen, Larry S. Davis, Ser-Nam Lim:
An Analysis of Object Embeddings for Image Retrieval. CoRR abs/1905.11903 (2019) - [i14]Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge J. Belongie, Ser-Nam Lim:
Enhancing Adversarial Example Transferability with an Intermediate Level Attack. CoRR abs/1907.10823 (2019) - [i13]Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S. Davis, Jun Li, Jian Yang, Ser-Nam Lim:
Cross-X Learning for Fine-Grained Visual Categorization. CoRR abs/1909.04412 (2019) - [i12]Zuxuan Wu, Ser-Nam Lim, Larry Davis, Tom Goldstein:
Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. CoRR abs/1910.14667 (2019) - [i11]Xuefei Cao, Bor-Chun Chen, Ser-Nam Lim:
Unsupervised Deep Metric Learning via Auxiliary Rotation Loss. CoRR abs/1911.07072 (2019) - [i10]Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge J. Belongie, Ser-Nam Lim:
Fine-grained Synthesis of Unrestricted Adversarial Examples. CoRR abs/1911.09058 (2019) - [i9]Chao Yang, Ser-Nam Lim:
Unconstrained Facial Expression Transfer using Style-based Generator. CoRR abs/1912.06253 (2019) - [i8]Yin Cui, Zeqi Gu, Dhruv Mahajan, Laurens van der Maaten, Serge J. Belongie, Ser-Nam Lim:
Measuring Dataset Granularity. CoRR abs/1912.10154 (2019) - 2018
- [c24]Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, Ser-Nam Lim:
Regularizing Deep Networks Using Efficient Layerwise Adversarial Training. AAAI 2018: 4008-4015 - [c23]Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, Rama Chellappa:
Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation. CVPR 2018: 3752-3761 - [c22]Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan Uzunbas, Tom Goldstein, Ser-Nam Lim, Larry S. Davis:
DCAN: Dual Channel-Wise Alignment Networks for Unsupervised Scene Adaptation. ECCV (5) 2018: 535-552 - [c21]Yi Wei, Ming-Ching Chang, Yiming Ying, Ser Nam Lim, Siwei Lyu:
Explain Black-box Image Classifications Using Superpixel-based Interpretation. ICPR 2018: 1640-1645 - [i7]Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan Uzunbas, Tom Goldstein, Ser-Nam Lim, Larry S. Davis:
DCAN: Dual Channel-wise Alignment Networks for Unsupervised Scene Adaptation. CoRR abs/1804.05827 (2018) - [i6]Qian Huang, Zeqi Gu, Isay Katsman, Horace He, Pian Pawakapan, Zhiqiu Lin, Serge J. Belongie, Ser-Nam Lim:
Intermediate Level Adversarial Attack for Enhanced Transferability. CoRR abs/1811.08458 (2018) - [i5]Horace He, Aaron Lou, Qingxuan Jiang, Isay Katsman, Pian Pawakapan, Serge J. Belongie, Ser-Nam Lim:
Adversarial Example Decomposition. CoRR abs/1812.01198 (2018) - 2017
- [c20]Mustafa Devrim Kaba, Mustafa Gökhan Uzunbas, Ser-Nam Lim:
A Reinforcement Learning Approach to the View Planning Problem. CVPR 2017: 5094-5102 - [c19]Wenbo Li, Longyin Wen, Ming-Ching Chang, Ser Nam Lim, Siwei Lyu:
Adaptive RNN Tree for Large-Scale Human Action Recognition. ICCV 2017: 1453-1461 - [c18]Swami Sankaranarayanan, Arpit Jain, Ser Nam Lim:
Guided Perturbations: Self-Corrective Behavior in Convolutional Neural Networks. ICCV 2017: 3582-3590 - [i4]Swami Sankaranarayanan, Arpit Jain, Ser Nam Lim:
Guided Perturbations: Self Corrective Behavior in Convolutional Neural Networks. CoRR abs/1703.07928 (2017) - [i3]Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, Ser-Nam Lim:
Regularizing deep networks using efficient layerwise adversarial training. CoRR abs/1705.07819 (2017) - [i2]Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser-Nam Lim, Rama Chellappa:
Unsupervised Domain Adaptation for Semantic Segmentation with GANs. CoRR abs/1711.06969 (2017) - 2016
- [c17]Wei Wang, Kun Duan, Tai-Peng Tian, Ting Yu, Ser Nam Lim, Hairong Qi:
Visual tracking based on object appearance and structure preserved local patches matching. AVSS 2016: 145-151 - [c16]Xiao Bian, Ser-Nam Lim, Ning Zhou:
Multiscale fully convolutional network with application to industrial inspection. WACV 2016: 1-8 - [c15]Ser-Nam Lim, Joao Soares, Ning Zhou:
Tooth guard: A vision system for detecting missing tooth in rope mine shovel. WACV 2016: 1-7 - [i1]Mustafa Devrim Kaba, Mustafa Gökhan Uzunbas, Ser-Nam Lim:
A Reinforcement Learning Approach to Sensor Planning for 3D Models. CoRR abs/1610.06204 (2016) - 2013
- [c14]Ser-Nam Lim, Li Guan, Shubao Liu, Xingwei Yang:
Automatic Registration of Smooth Object Image to 3D CAD Model for Industrial Inspection Applications. 3DV 2013: 79-86 - 2012
- [c13]Li Guan, Ting Yu, Peter H. Tu, Ser-Nam Lim:
Simultaneous image segmentation and 3D plane fitting for RGB-D sensors - An iterative framework. CVPR Workshops 2012: 49-56 - 2011
- [c12]Ting Yu, Xiaoming Liu, Sernam Lim, Nils Krahnstoever, Peter H. Tu:
Automatic surveillance video matting using a shape prior. ICCV Workshops 2011: 1761-1768 - [c11]Ser-Nam Lim, Gianfranco Doretto, Jens Rittscher:
Multi-class Object Layout with Unsupervised Image Classification and Object Localization. ISVC (1) 2011: 573-585 - 2010
- [c10]Ming-Ching Chang, Nils Krahnstoever, Sernam Lim, Ting Yu:
Group Level Activity Recognition in Crowded Environments across Multiple Cameras. AVSS 2010: 56-63
2000 – 2009
- 2009
- [c9]Ting Yu, Ser-Nam Lim, Kedar A. Patwardhan, Nils Krahnstoever:
Monitoring, recognizing and discovering social networks. CVPR 2009: 1462-1469 - [p1]Nils Krahnstoever, Ting Yu, Ser-Nam Lim, Kedar A. Patwardhan:
Collaborative Control of Active Cameras in Large-Scale Surveillance. Multi-Camera Networks 2009: 165-188 - 2007
- [c8]Ser-Nam Lim, Larry S. Davis, Anurag Mittal:
Task Scheduling in Large Camera Networks. ACCV (1) 2007: 397-407 - [c7]Ser-Nam Lim, Larry S. Davis:
An Ease-of-Use Stereo-Based Particle Filter for Tracking Under Occlusion. Workshop on Human Motion 2007: 225-239 - 2006
- [b1]Ser-Nam Lim:
Sensor, Motion and Temporal Planning. University of Maryland, College Park, MD, USA, 2006 - [j1]Ser-Nam Lim, Larry S. Davis, Anurag Mittal:
Constructing task visibility intervals for video surveillance. Multim. Syst. 12(3): 211-226 (2006) - 2005
- [c6]Ser-Nam Lim, Anurag Mittal, Larry S. Davis, Nikos Paragios:
Fast Illumination-Invariant Background Subtraction Using Two Views: Error Analysis, Sensor Placement and Applications. CVPR (1) 2005: 1071-1078 - [c5]Ser-Nam Lim, Anurag Mittal, Larry Davis:
Constructing task visibility intervals for a surveillance system. VSSN@MM 2005: 141-148 - 2004
- [c4]Ser-Nam Lim, Anurag Mittal, Larry S. Davis, Nikos Paragios:
Uncalibrated stereo rectification for automatic 3d surveillance. ICIP 2004: 1357-1360 - [c3]Ali Zandifar, Ser-Nam Lim, Ramani Duraiswami, Nail A. Gumerov, Larry S. Davis:
Multi-level fast multipole method for thin plate spline evaluation. ICIP 2004: 1683-1686 - 2003
- [c2]Ser-Nam Lim, Larry S. Davis, Ahmed M. Elgammal:
A Scalable Image-Based Multi-Camera Visual Surveillance System. AVSS 2003: 205-212 - [c1]Ser-Nam Lim, Ahmed M. Elgammal, Larry S. Davis:
Image-based pan-tilt camera control in a multi-camera surveillance environment. ICME 2003: 645-648
Coauthor Index
aka: Borchun Chen
aka: Larry S. Davis
aka: Philip H. S. Torr
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 21:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint