


default search action
Machine Learning, Volume 93
Volume 93, Number 1, October 2013
- Hendrik Blockeel

, Kristian Kersting, Siegfried Nijssen
, Filip Zelezný
:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. 1-3 - Nicola Barbieri, Giuseppe Manco

, Ettore Ritacco
, Marco Carnuccio, Antonio Bevacqua:
Probabilistic topic models for sequence data. 5-29 - Mathieu Blondel, Kazuhiro Seki, Kuniaki Uehara:

Block coordinate descent algorithms for large-scale sparse multiclass classification. 31-52 - Kai Brügge, Asja Fischer

, Christian Igel:
The flip-the-state transition operator for restricted Boltzmann machines. 53-69 - José Hernández-Orallo, Peter A. Flach

, César Ferri
:
ROC curves in cost space. 71-91 - Maurizio Filippone

, Mingjun Zhong, Mark A. Girolami
:
A comparative evaluation of stochastic-based inference methods for Gaussian process models. 93-114 - Nico Piatkowski

, Sangkyun Lee
, Katharina Morik:
Spatio-temporal random fields: compressible representation and distributed estimation. 115-139 - Quan Sun, Bernhard Pfahringer:

Pairwise meta-rules for better meta-learning-based algorithm ranking. 141-161 - Zhanglong Ji, Charles Elkan:

Differential privacy based on importance weighting. 163-183
Volume 93, Numbers 2-3, November 2013
- Eyke Hüllermeier, Johannes Fürnkranz

:
Editorial: Preference learning and ranking. 185-189 - Mihajlo Grbovic, Nemanja Djuric, Shengbo Guo, Slobodan Vucetic:

Supervised clustering of label ranking data using label preference information. 191-225 - Clément Calauzènes, Nicolas Usunier, Patrick Gallinari:

Calibration and regret bounds for order-preserving surrogate losses in learning to rank. 227-260 - Róbert Busa-Fekete, Balázs Kégl, Tamás Éltetö, György Szarvas:

Tune and mix: learning to rank using ensembles of calibrated multi-class classifiers. 261-292 - Levente Kocsis, András György

, Andrea N. Bán:
BoostingTree: parallel selection of weak learners in boosting, with application to ranking. 293-320 - Tapio Pahikkala

, Antti Airola
, Michiel Stock, Bernard De Baets
, Willem Waegeman:
Efficient regularized least-squares algorithms for conditional ranking on relational data. 321-356 - Benjamin Letham, Cynthia Rudin, David Madigan:

Sequential event prediction. 357-380 - Salvatore Corrente, Salvatore Greco, Milosz Kadzinski

, Roman Slowinski
:
Robust ordinal regression in preference learning and ranking. 381-422

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














