


default search action
xAI 2024: Valletta, Malta
- Luca Longo, Weiru Liu, Grégoire Montavon:

Joint Proceedings of the xAI 2024 Late-breaking Work, Demos and Doctoral Consortium co-located with the 2nd World Conference on eXplainable Artificial Intelligence (xAI-2024), Valletta, Malta, July 17-19, 2024. CEUR Workshop Proceedings 3793, CEUR-WS.org 2024 - Preface.

Late-Breaking Work
- Raphael Wallsberger, Ricardo Knauer, Stephan Matzka:

Explainable Artificial Intelligence Beyond Feature Attributions: The Validity and Reliability of Feature Selection Explanations. 1-8 - Paolo Giudici, Parvati Neelakantan:

Shapley values and fairness. 9-16 - Michael Erol Schaffer, Lutz Terfloth, Carsten Schulte, Heike M. Buhl:

Perception and Consideration of the Explainees' Needs for Satisfying Explanations. 17-24 - Arjun Vinayak Chikkankod, Luca Longo:

A proposal for improving EEG microstate generation via interpretable deep clustering with convolutional autoencoders. 25-32 - Yao Rong, David Scheerer, Enkelejda Kasneci:

Faithful Attention Explainer: Verbalizing Decisions Based on Discriminative Features. 33-40 - Gulsum Alicioglu, Bo Sun:

Use Bag-of-Patterns Approach to Explore Learned Behaviors of Reinforcement Learning. 41-48 - Zhechang Xue, Yiran Huang, Hongnan Ma, Michael Beigl:

Generate Explanations for Time-series classification by ChatGPT. 49-56 - Paolo Giudici, Giulia Vilone:

Model agnostic calibration of image classifiers. 57-64 - Ephrem T. Mekonnen, Luca Longo, Pierpaolo Dondio:

Interpreting Black-Box Time Series Classifiers using Parameterised Event Primitives. 65-72 - Lisa Anita De Santi, Jörg Schlötterer, Meike Nauta, Vincenzo Positano, Christin Seifert:

Patch-based Intuitive Multimodal Prototypes Network (PIMPNet) for Alzheimer's Disease classification. 73-80 - Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Marc Langheinrich:

AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model. 81-88 - Amal Saadallah:

Online Explainable Ensemble of Tree Models Pruning for Time Series Forecasting. 89-96 - Leon Hegedic, Luka Hobor, Nikola Maric, Martin Ante Rogosic, Mario Brcic:

Towards Mechanistic Interpretability for Autoencoder compression of EEG signals. 97-104 - Luca Macis, Marco Tagliapietra, Alessandro Castelnovo, Daniele Regoli, Greta Greco, Andrea Claudio Cosentini, Paola Pisano, Edoardo Carroccetto:

Integrating XAI for Predictive Conflict Analytics. 105-112 - Yuwei Liu, Chen Dan, Anubhav Bhatti, Bingjie Shen, Divij Gupta, Suraj Parmar, San Lee:

Interpretable Vital Sign Forecasting with Model Agnostic Attention Maps. 113-120 - Tomas Bueno Momcilovic, Beat Buesser, Giulio Zizzo, Mark Purcell, Dian Balta:

Towards Assurance of LLM Adversarial Robustness using Ontology-Driven Argumentation. 121-128 - Andrzej Porebski:

Looking for the Right Paths to Use XAI in the Judiciary. Which Branches of Law Need Inherently Interpretable Machine Learning Models and Why? 129-136 - Urja Pawar, Ruairi O'Reilly, Christian Beder, Donna O'Shea:

The Dynamics of Explainability: Diverse Insights from SHAP Explanations using Neighbourhoods. 137-144 - Vladimir Marochko, Luca Longo:

Enhancing the analysis of the P300 event-related potential with integrated gradients on a convolutional neural network trained with superlets. 145-152 - Eduard Barbu, Marharyta Domnich, Raul Vicente, Nikos Sakkas:

Exploring Commonalities in Explanation Frameworks: A Multi-Domain Survey Analysis. 153-160 - Nicholas Pochinkov, Ben Pasero, Skylar Shibayama:

Investigating Neuron Ablation in Attention Heads: The Case for Peak Activation Centering. 161-168 - Hamza Zidoum, Ali AlShareedah, Aliya Al-Ansari, Batool Al-Lawati, Sumaya Al-Sawafi:

CatBoost model with self-explanatory capabilities for predicting SLE in OMAN population. 169-176 - Ladan Gholami, Pietro Ducange, Pietro Cassarà, Alberto Gotta:

Channel Modeling for Millimeter-Wave UAV Communication based on Explainable Generative Neural Network. 177-184 - Antonio Mastroianni, Sibylle D. Sager-Müller:

Validation of ML Models from the Field of XAI for Computer Vision in Autonomous Driving. 185-192 - Zohaib Shahid, Yogachandran Rahulamathavan, Safak Dogan:

Second Glance: A Novel Explainable AI to Understand Feature Interactions in Neural Networks using Higher-Order Partial Derivatives. 193-200 - Siri Padmanabhan Poti, Christopher J. Stanton:

Mediating Explainer for Human Autonomy Teaming. 201-208 - Ondrej Lukás, Sebastián García:

Exploring Agent Behaviors in Network Security through Trajectory Clustering. 209-216 - Giovanni Bocchi, Patrizio Frosini, Alessandra Micheletti, Alessandro Pedretti, Gianluca Palermo, Davide Gadioli, Carmen Gratteri, Filippo Lunghini, Andrea Rosario Beccari, Anna Fava, Carmine Talarico:

A geometric XAI approach to protein pocket detection. 217-224 - Felix Liedeker, Christoph Düsing, Marcel Nieveler, Philipp Cimiano:

An Empirical Investigation of Users' Assessment of XAI Explanations: Identifying the Sweet Spot of Explanation Complexity and Value. 225-232 - André Artelt, Andreas Gregoriades:

A Two-Stage Algorithm for Cost-Efficient Multi-instance Counterfactual Explanations. 233-240 - Finn Schürmann, Sibylle D. Sager-Müller:

Interactive xAI-dashboard for Semantic Segmentation. 241-248 - Mohammad Naiseh, Catherine Webb, Timothy J. Underwood, Gopal Ramchurn, Zoë Walters, Navamayooran Thavanesan, Ganesh Vigneswaran:

XAI for Group-AI Interaction: Towards Collaborative and Inclusive Explanations. 249-256 - Riccardo Crupi, Daniele Regoli, Alessandro Damiano Sabatino, Immacolata Marano, Massimiliano Brinis, Luca Albertazzi, Andrea Cirillo, Andrea Claudio Cosentini:

Unraveling Anomalies: Explaining Outliers with DTOR. 257-264
Demos
- Romain Xu-Darme, Aymeric Varasse, Alban Grastien, Julien Girard-Satabin, Zakaria Chihani:

CaBRNet, An Open-Source Library For Developing And Evaluating Case-Based Reasoning Models. 265-272 - Van Bach Nguyen, Jörg Schlötterer, Christin Seifert:

XAgent: A Conversational XAI Agent Harnessing the Power of Large Language Models. 273-280 - Susanne Dandl, Marc Becker, Bernd Bischl, Giuseppe Casalicchio, Ludwig Bothmann:

mlr3summary: Concise and interpretable summaries for machine learning models. 281-288 - Gabriele Sarti, Nils Feldhus, Jirui Qi, Malvina Nissim, Arianna Bisazza:

Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit. 289-296 - Jérôme Guzzi, Alessandro Giusti:

Human-in-the-loop testing of the explainability of robot navigation algorithms in extended reality. 297-304 - Claudio Muselli, Damiano Verda, Enrico Ferrari, Claire Thomas Gaggiotti, Marco Muselli:

Rulex Platform: leveraging domain knowledge and data-driven rules to support decisions in the fintech sector through eXplainable AI models. 305-312 - Marta Caro-Martínez, Anne Liret, Belén Díaz-Agudo, Juan A. Recio-García, Jesus M. Darias, Nirmalie Wiratunga, Anjana Wijekoon, Kyle Martin, Ikechukwu Nkisi-Orji, David Corsar, Chamath Palihawadana, Craig Pirie, Derek G. Bridge, Preeja Pradeep, Bruno Fleisch:

Building Personalised XAI Experiences Through iSee: a Case-Based Reasoning-Driven Platform. 313-320
Doctoral Consortium
- Laura Bergomi:

Fostering Human-AI interaction: development of a Clinical Decision Support System enhanced by eXplainable AI and Natural Language Processing. 321-328 - Danilo Danese:

Optimizing Synthetic Data from Scarcity: Towards Meaningful Data Generation in High-Dimensional Low-Sample Size Domains. 329-336 - Oleksandr Davydko:

Assesing the Interpretability of the Statistical Radiomic Features via Image Saliency Maps in Medical Image Classification Tasks. 337-344 - Regina De Brito Duarte:

Explainable AI as a Crucial Factor for Improving Human-AI Decision-Making Processes. 345-352 - Renate Ernst:

Counterfactual generating Variational Autoencoder for Anomaly Detection. 353-360 - Fatima Ezzeddine:

Privacy Implications of Explainable AI in Data-Driven Systems. 361-368 - Rokas Gipiskis:

XAI-driven Model Improvements in Interpretable Image Segmentation. 369-376 - Iris Heerlien:

Design Guidelines for XAI in the Healthcare Domain. 377-384 - Annemarie Jutte:

Explainable MLOps: A Methodological Framework for the Development of Explainable AI in Practice. 385-392 - Marija Kopanja:

A Novel Model-Agnostic xAI Method Guided by Cost-Sensitive Tree Models and Argumentative Decision Graphs. 393-400 - Stefanie Krause:

Explainable Artificial Intelligence and Reasoning in the Context of Large Neural Network Models. 401-408 - Lea Louisa Kronziel:

Artificial Representative Trees as Interpretable Surrogates for Random Forests. 409-416 - Pedro M. Marques:

Can Reduction of Bias Decrease the Need for Explainability? Working with Simplified Models to Understand Complexity. 417-424 - Philip Naumann:

Towards XAI for Optimal Transport. 425-432 - Lenka Tetková:

Knowledge Graphs and Explanations for Improving Detection of Diseases in Images of Grains. 433-440 - Víctor Toscano-Durán:

Topological Data Analysis for Trustworthy AI. 441-448 - Nils Wenninghoff:

Explainable Deep Reinforcement Learning through Introspective Explanations. 449-456 - Sargam Yadav:

Explainable and Debiased Misogyny Identification In Code-Mixed Hinglish using Artificial Intelligence Models. 457-464

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














