


default search action
PGM 2020: Aalborg, Denmark
- Manfred Jaeger, Thomas Dyhre Nielsen:

International Conference on Probabilistic Graphical Models, PGM 2020, 23-25 September 2020, Aalborg, Hotel Comwell Rebild Bakker, Skørping, Denmark. Proceedings of Machine Learning Research 138, PMLR 2020 - Thomas D. Nielsen, Manfred Jaeger:

Preface. 1-4 - Laura Azzimonti, Giorgio Corani, Marco Scutari:

Structure Learning from Related Data Sets with a Hierarchical Bayesian Score. 5-16 - Konstantina Biza, Ioannis Tsamardinos, Sofia Triantafillou:

Tuning Causal Discovery Algorithms. 17-28 - Tjebbe Bodewes, Marco Scutari:

Identifiability and Consistency of Bayesian Network Structure Learning from Incomplete Data. 29-40 - Alessandro Bregoli, Marco Scutari, Fabio Stella:

Constraing-Based Learning for Continous-Time Bayesian Networks. 41-52 - Cory J. Butz, Jhonatan de S. Oliveira, Robert Peharz:

Sum-Product Network Decompilation. 53-64 - Cong Chen, Jiaqi Yang, Chao Chen, Changhe Yuan:

Solving Multiple Inference by Minimizing Expected Loss. 65-76 - Cong Chen, Changhe Yuan, Chao Chen:

Efficient Heuristic Search for M-Modes Inference. 77-88 - Yizuo Chen, Arthur Choi, Adnan Darwiche:

Supervised Learning with Background Knowledge. 89-100 - Kiattikun Chobtham, Anthony C. Constantinou:

Bayesian network structure learning with causal effects in the presence of latent variables. 101-112 - Karine Chubarian, György Turán:

Approximating bounded tree-width Bayesian network classifiers with OBDD. 113-124 - Pierre Clavier, Olivier Bouaziz, Grégory Nuel:

Gaussian Sum-Product Networks Learning in the Presence of Interval Censored Data. 125-136 - Meihua Dang, Antonio Vergari, Guy Van den Broeck:

Strudel: Learning Structured-Decomposable Probabilistic Circuits. 137-148 - Cassio P. de Campos:

Almost No News on the Complexity of MAP in Bayesian Networks. 149-160 - Fan Ding, Yexiang Xue:

Contrastive Divergence Learning with Chained Belief Propagation. 161-172 - Gaspard Ducamp, Philippe Bonnard, Anthony Nouy, Pierre-Henri Wuillemin:

An Efficient Low-Rank Tensors Representation for Algorithms in Complex Probabilistic Graphical Models. 173-184 - Evan Dufraisse, Philippe Leray, Raphaël Nedellec, Tarek Benkhelif:

Interactive Anomaly Detection in Mixed Tabular Data using Bayesian Networks. 185-196 - Nils Finke, Marcel Gehrke, Tanya Braun, Tristan Potten, Ralf Möller:

Investigating Matureness of Probabilistic Graphical Models for Dry-Bulk Shipping. 197-208 - Pierre Gillot, Pekka Parviainen:

Scalable Bayesian Network Structure Learning via Maximum Acyclic Subgraph. 209-220 - Teny Handhayani, James Cussens

:
Kernel-based Approach for Learning Causal Graphs from Mixed Data. 221-232 - Mattis Hartwig, Ralf Möller:

Lifted Query Answering in Gaussian Bayesian Networks. 233-244 - Radim Jirousek:

On a possibility of gradual model-learning. 245-256 - David Kinney, David S. Watson:

Causal Feature Learning for Utility-Maximizing Agents. 257-268 - Ondrej Kuzelka, Vyacheslav Kungurtsev, Yuyi Wang:

Lifted Weight Learning of Markov Logic Networks (Revisited One More Time). 269-280 - Anders L. Madsen, Kristian G. Olesen, Heidi Lynge Løvschall, Nicolaj Søndberg-Jeppesen, Frank Jensen, Morten Lindblad, Mads Lause Mogensen, Trine Søby Christensen:

Prediction of High Risk of Deviations in Home Care Deliveries. 281-292 - Denis Deratani Mauá, Heitor Ribeiro Reis, Gustavo Perez Katague, Alessandro Antonucci:

Two Reformulation Approaches to Maximum-A-Posteriori Inference in Sum-Product Networks. 293-304 - Konrad P. Mielke, Tom Claassen, Mark A. J. Huijbregts, Aafke M. Schipper, Tom M. Heskes:

Discovering cause-effect relationships in spatial systems with a known direction based on observational data. 305-316 - George Orfanides, Aritz Pérez:

Learning decomposable models by coarsening. 317-328 - Luis E. Ortiz, Boshen Wang, Ze Gong:

Correlated Equilibria for Approximate Variational Inference in MRFs. 329-340 - Tomás Pevný, Václav Smídl, Martin Trapp, Ondrej Polácek, Tomás Oberhuber:

Sum-Product-Transform Networks: Exploiting Symmetries using Invertible Transformations. 341-352 - Nandini Ramanan, Mayukh Das, Kristian Kersting, Sriraam Natarajan:

Discriminative Non-Parametric Learning of Arithmetic Circuits. 353-364 - Kari Rantanen, Antti Hyttinen, Matti Järvisalo:

Learning Optimal Cyclic Causal Graphs from Interventional Data. 365-376 - Verónica Rodríguez-López

, Luis Enrique Sucar:
Knowledge Transfer for Learning Markov Equivalence Classes. 377-388 - Wolfgang Roth, Franz Pernkopf:

Differentiable TAN Structure Learning for Bayesian Network Classifiers. 389-400 - Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, Kristian Kersting:

Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures. 401-412 - Charupriya Sharma, Zhenyu A. Liao, James Cussens

, Peter van Beek:
A Score-and-Search Approach to Learning Bayesian Networks with Noisy-OR Relations. 413-424 - Yujia Shen, Arthur Choi, Adnan Darwiche:

A New Perspective on Learning Context-Specific Independence. 425-436 - Aditi Shenvi, Jim Q. Smith:

Constructing a Chain Event Graph from a Staged Tree. 437-448 - Milan Studený, James Cussens

, Václav Kratochvíl:
Dual Formulation of the Chordal Graph Conjecture. 449-460 - Shouta Sugahara, Itsuki Aomi, Maomi Ueno:

Bayesian Network Model Averaging Classifiers by Subbagging. 461-472 - Topi Talvitie, Pekka Parviainen:

Learning Bayesian Networks with Cops and Robbers. 473-484 - Nazanin Khosravani Tehrani, Nimar S. Arora, Yucen Lily Li, Kinjal Divesh Shah, David Noursi, Michael Tingley, Narjes Torabi, Sepehr Masouleh, Eric Lippert, Erik Meijer:

Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference. 485-496 - Veronica Tozzo, Davide Garbarino, Annalisa Barla:

Missing Values in Multiple Joint Inference of Gaussian Graphical Models. 497-508 - Linda C. van der Gaag, Silja Renooij, Alessandro Facchini:

Building Causal Interaction Models by Recursive Unfolding. 509-520 - Linda C. van der Gaag, Janneke H. Bolt:

Poset Representations for Sets of Elementary Triplets. 521-532 - Jos van de Wolfshaar, Andrzej Pronobis:

Deep Generalized Convolutional Sum-Product Networks. 533-544 - Fabrizio Ventola, Karl Stelzner, Alejandro Molina, Kristian Kersting:

Residual Sum-Product Networks. 545-556 - Cen Wan, Alex Alves Freitas:

Hierarchical Dependency Constrained Averaged One-Dependence Estimators Classifiers for Hierarchical Feature Spaces. 557-568 - Xiufan Yu, Karthikeyan Shanmugam

, Debarun Bhattacharjya, Tian Gao, Dharmashankar Subramanian, Lingzhou Xue:
Hawkesian Graphical Event Models. 569-580 - Marco Zaffalon, Alessandro Antonucci, Rafael Cabañas:

Structural Causal Models Are (Solvable by) Credal Networks. 581-592 - Nikolas Bernaola, Mario Michiels, Concha Bielza, Pedro Larrañaga:

BayesSuites: An Open Web Framework for Visualization of Massive Bayesian Networks. 593-596 - Rafael Cabañas, Alessandro Antonucci, David Huber, Marco Zaffalon:

CREDICI: A Java Library for Causal Inference by Credal Networks. 597-600 - Rafael Cabañas, Javier Cózar, Antonio Salmerón, Andrés R. Masegosa:

Probabilistic Graphical Models with Neural Networks in InferPy. 601-604 - James Cussens

:
GOBNILP: Learning Bayesian network structure with integer programming. 605-608 - Gaspard Ducamp, Christophe Gonzales, Pierre-Henri Wuillemin:

aGrUM/pyAgrum : a toolbox to build models and algorithms for Probabilistic Graphical Models in Python. 609-612 - David Huber, Rafael Cabañas, Alessandro Antonucci, Marco Zaffalon:

CREMA: A Java Library for Credal Network Inference. 613-616 - Anders L. Madsen, Kristian G. Olesen, Jørn Munkhof Møller, Nicolaj Søndberg-Jeppesen, Frank Jensen, Thomas Mulvad Larsen, Per Henriksen, Morten Lindblad, Trine Søby Christensen:

A Software System for Predicting Patient Flow at the Emergency Department of Aalborg University Hospital. 617-620 - Alex Markham, Aditya Chivukula, Moritz Grosse-Wentrup:

MeDIL: A Python Package for Causal Modelling. 621-624 - Jonathan Serrano-Pérez, Luis Enrique Sucar:

PGM_PyLib: A Toolkit for Probabilistic Graphical Models in Python. 625-628

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














