


default search action
MLHC 2024: Toronto, Canada
- Kaivalya Deshpande, Madalina Fiterau, Shalmali Joshi, Zachary C. Lipton, Rajesh Ranganath, Iñigo Urteaga:

Machine Learning for Healthcare Conference, 16-17 August 2024, Toronto, Canada. Proceedings of Machine Learning Research 252, PMLR 2024 - Haoran Zhang, Supriya Nagesh, Milind Shyani, Nina Mishra:

DOSSIER: Fact Checking in Electronic Health Records while Preserving Patient Privacy. - Hye Sun Yun, David Pogrebitskiy, Iain James Marshall, Byron C. Wallace:

Automatically Extracting Numerical Results from Randomized Controlled Trials with Large Language Models. - Hong Xiong, Feng Wu, Leon Deng, Megan Su, Li-Wei H. Lehman:

G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes. - Yuqing Wang, Malvika Pillai, Yun Zhao, Catherine M. Curtin, Tina Hernandez-Boussard:

FairEHR-CLP: Towards Fairness-Aware Clinical Predictions with Contrastive Learning in Multimodal Electronic Health Records. - Cécile Trottet, Manuel Schürch, Ahmed Allam, Imon Barua, Liubov Petelytska, Oliver Distler, Anna-Maria Hoffmann-Vold, Michael Krauthammer:

Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis. - Fatemeh Tavakoli, David B. Emerson, Sana Ayromlou, John Taylor Jewell, Amrit Krishnan, Yuchong Zhang, Amol Verma, Fahad Razak:

A Comprehensive View of Personalized Federated Learning on Heterogeneous Clinical Datasets. - Michael Staniek, Marius Fracarolli, Michael Hagmann, Stefan Riezler:

Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting. - Ziyang Song, Qincheng Lu, He Zhu, David L. Buckeridge, Yue Li:

Bidirectional Generative Pre-training for Improving Healthcare Time-series Representation Learning. - Baoyi Shi, Ying Liu, Shanghong Xie, Xi Zhu, Yuanjia Wang:

Network-Assisted Mediation Analysis with High-Dimensional Neuroimaging Mediators. - Judy Hanwen Shen, Inioluwa Deborah Raji, Irene Y. Chen:

The Data Addition Dilemma. - Abhishek Sharma, Sonali Parbhoo, Omer Gottesman, Finale Doshi-Velez:

Decision-Focused Model-based Reinforcement Learning for Reward Transfer. - Jacob Schultz, Jerry L. Prince, Bruno M. Jedynak:

Predictive Powered Inference for Healthcare; Relating Optical Coherence Tomography Scans to Multiple Sclerosis Disease Progression. - Saige Rutherford, Thomas Wolfers, Charlotte J. Fraza, Nathaniel G. Harnett, Christian F. Beckmann, Henricus G. Ruhe, Andre F. Marquand:

To which reference class do you belong? Measuring racial fairness of reference classes with normative modeling. - Umaima Rahman, Abhishek Basu, Muhammad Uzair Khattak, Aniq Ur Rahman:

XDT-CXR: Investigating Cross-Disease Transferability in Zero-Shot Binary Classification of Chest X-Rays. - Nassim Oufattole, Hyewon Jeong, Matthew B. A. McDermott

, Aparna Balagopalan, Bryan Jangeesingh, Marzyeh Ghassemi, Collin M. Stultz:
Event-Based Contrastive Learning for Medical Time Series. - Mikkel Odgaard, Kiril Vadimovic Klein, Martin Sillesen, Sanne Møller Thysen, Espen Jimenez-Solem, Mads Nielsen:

CORE-BEHRT: A Carefully Optimized and Rigorously Evaluated BEHRT. - Jamie Norris, Aswin Chari, Dorien van Blooijs, Gerald K. Cooray, Karl J. Friston, Martin Tisdall, Richard Rosch:

Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a CNN Transformer. - Sujay Nagaraj, Andrew J. Goodwin, Dmytro Lopushanskyy, Sebastian D. Goodfellow, Danny Eytan, Hadrian Balaci, Robert Greer, Anand Jayarajan, Azadeh Assadi, Mjaye Leslie Mazwi, Anna Goldenberg:

Needles in Needle Stacks: Meaningful Clinical Information Buried in Noisy Sensor Data. - Yun Chao Lin, Andrea Clark-Sevilla, Rohith Ravindranath, Fthimnir Hassan, Justin Reyes, Joseph Lombardi, Lawrence G. Lenke, Ansaf Salleb-Aouissi:

A LUPI distillation-based approach: Application to predicting Proximal Junctional Kyphosis. - Bhawesh Kumar, Jonathan Amar, Eric Yang, Nan Li, Yugang Jia:

Selective Fine-tuning on LLM-labeled Data May Reduce Reliance on Human Annotation: A Case Study Using Schedule-of-Event Table Detection. - Woojung Kim, Paul A. Jenkins, Christopher Yau:

Mixed Type Multimorbidity Variational Autoencoder: A Deep Generative Model for Multimorbidity Analysis. - Junu Kim, Chaeeun Shim, Bosco Seong Kyu Yang, Chami Im, Sung Yoon Lim, Han-Gil Jeong, Edward Choi:

General-Purpose Retrieval-Enhanced Medical Prediction Model Using Near-Infinite History. - Abhishek Jaiswal, Nisheeth Srivastava:

Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification. - Alyssa Huang, Oishi Banerjee, Kay Wu, Eduardo Pontes Reis, Pranav Rajpurkar:

FineRadScore: A Radiology Report Line-by-Line Evaluation Technique Generating Corrections with Severity Scores. - Yijie Hao, Huan He, Joyce C. Ho:

LLMSYN: Generating Synthetic Electronic Health Records Without Patient-Level Data. - Juan Jose Garcia, Nikhil Sarin, Rebecca Kitzmiller, Ashok K. Krishnamurthy, Jessica K. Zègre-Hemsey:

Risk stratification through class-conditional conformal estimation: A strategy that improves the rule-out performance of MACE in the prehospital setting. - Xiang Gao, Michael Cooper, Maryam Naghibzadeh, Amirhossein Azhie, Mamatha Bhat, Rahul G. Krishnan:

Predicting Long-Term Allograft Survival in Liver Transplant Recipients. - Vaibhav Ganatra, Drishti Goel:

PRECISe : Prototype-Reservation for Explainable classification under Imbalanced and Scarce-Data Settings. - Lucia Filippozzi, Santiago Mazuelas, Iñigo Urteaga:

Minimax Risk Classifiers for Mislabeled Data: a Study on Patient Outcome Prediction Tasks. - Hamed Fayyaz, Niharika S. D'Souza, Rahmatollah Beheshti:

Multimodal Sleep Apnea Detection with Missing or Noisy Modalities. - Hylke C. Donker, Dorien Neijzen, Johann de Jong, Gerton A. Lunter:

Multinomial belief networks for healthcare data. - Rishit Dagli, Atsuhiro Hibi, Rahul G. Krishnan, Pascal N. Tyrrell:

NeRF-US: Removing Ultrasound Imaging Artifacts from Neural Radiance Fields in the Wild. - Jihye Choi, Nils Palumbo, Prasad Chalasani, Matthew M. Engelhard, Somesh Jha, Anivarya Kumar, David Page:

MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance. - Isabel Chien, Cliff Wong, Zelalem Gero, Jaspreet Bagga, Risa Ueno, Richard E. Turner, Roshanthi Weerasinghe, Brian Piening, Tristan Naumann, Carlo Bifulco, Hoifung Poon, Javier González Hernández:

Beyond Clinical Trials: Using Real World Evidence to Investigate Heterogeneous, Time-Varying Treatment Effects. - Nimeesha Chan, Felix Parker, William Bennett, Tianyi Wu, Mung Yao Jia, James Fackler, Kimia Ghobadi:

Leveraging LLMs for Multimodal Medical Time Series Analysis. - Oishi Banerjee, Hong-Yu Zhou, Kay Wu, Subathra Adithan, Stephen Kwak, Pranav Rajpurkar:

Direct Preference Optimization for Suppressing Hallucinated Prior Exams in Radiology Report Generation. - Arnold Caleb Asiimwe, Didac Suris Coll-Vinent, Pranav Rajpurkar, Carl Vondrick:

MedAutoCorrect: Image-Conditioned Autocorrection in Medical Reporting.

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














