![](https://dblp1.uni-trier.de/img/logo.320x120.png)
![search dblp search dblp](https://dblp1.uni-trier.de/img/search.dark.16x16.png)
![search dblp](https://dblp1.uni-trier.de/img/search.dark.16x16.png)
default search action
Image Perception, Observer Performance, and Technology Assessment 2019: San Diego, CA, USA
- Robert M. Nishikawa, Frank W. Samuelson:
Medical Imaging 2019: Image Perception, Observer Performance, and Technology Assessment, San Diego, California, United States, 16-21 February 2019. SPIE Proceedings 10952, SPIE 2019
Image Perception
- Ziba Gandomkar
, Ernest U. Ekpo, Sarah J. Lewis
, Karla K. Evans, Kriscia A. Tapia, Phuong Dung Trieu, Jeremy M. Wolfe, Patrick C. Brennan
:
Does the strength of the gist signal predict the difficulty of breast cancer detection in usual presentation and reporting mechanisms? 1095203 - Nicholas M. D'Ardenne, Robert M. Nishikawa
, Margarita L. Zuley, Chia-Chien Wu, Jeremy M. Wolfe:
Oculomotor behaviour of radiologists reading digital breast tomosynthesis (DBT). 1095204
Model Observers I
- Daniel Gomez-Cardona, Shuai Leng, Christopher P. Favazza, Beth A. Schueler, Kenneth A. Fetterly:
Automatic strategy for CHO channel reduction in x-ray angiography systems. 1095205 - Craig K. Abbey, Frank W. Samuelson, Rongping Zeng, John M. Boone, Miguel P. Eckstein, Kyle J. Myers:
Template models for forced-localization tasks. 1095206 - Jason L. Granstedt, Weimin Zhou, Mark A. Anastasio:
Autoencoder embedding of task-specific information. 1095207 - Weimin Zhou, Hua Li, Mark A. Anastasio:
Learning the Hotelling observer for SKE detection tasks by use of supervised learning methods. 1095208 - Weimin Zhou, Mark A. Anastasio:
Learning the ideal observer for joint detection and localization tasks by use of convolutional neural networks. 1095209
Model Observers II
- Angel R. Pineda:
Laguerre-Gauss and sparse difference-of-Gaussians observer models for signal detection using constrained reconstruction in magnetic resonance imaging. 109520A - Howard C. Gifford
, Zohreh Karbaschi:
Tests of projection and reconstruction domain equivalence for a feature-driven model observer. 109520B - Christiana Balta, Ioannis Sechopoulos
, Ramona W. Bouwman, Mireille J. M. Broeders, Nico Karssemeijer, Ruben E. van Engen, Wouter J. H. Veldkamp:
New difference of Gaussian channel-sets for the channelized Hotelling observer? 109520C - Miguel A. Lago, Craig K. Abbey, Miguel P. Eckstein:
A foveated channelized Hotelling search model predicts dissociations in human performance in 2D and 3D images. 109520D - W. Murphy, Premkumar Elangovan, Mark D. Halling-Brown, Emma Lewis, K. C. Young, David R. Dance, Kevin Wells:
Using transfer learning for a deep learning model observer. 109520E
Technology Impact and Assessment
- Stephen L. Hillis
, Badera Al Mohammad
, Patrick C. Brennan
:
Estimating latent reader-performance variability using the Obuchowski-Rockette method. 109520F - Weijie Chen, Zhipeng Huang, Frank W. Samuelson, Lucas Tcheuko:
Adaptive sample size re-estimation in MRMC studies. 109520G - Ramy Mohammed Abdlaty, Lilian Doerwald-Munoz, Joseph Hayward, Qiyin Fang:
Radiation therapy induced-erythema: comparison of spectroscopic diffuse reflectance measurements and visual assessment. 109520H - Elizabeth A. Krupinski:
Impact of patient photos on detection accuracy, decision confidence, and eye-tracking parameters in chest and abdomen images with tubes and lines. 109520I - Ethan Du-Crow
, Lucy M. Warren, Susan M. Astley, Johan Hulleman:
Is there a safety-net effect with computer-aided detection (CAD)? 109520J
Deep Learning Applications
- Hao Gong, Andrew Walther
, Qiyuan Hu
, Chi Wan Koo, Edwin A. Takahashi
, David L. Levin, Tucker F. Johnson, Megan J. Hora, Shuai Leng, Joel G. Fletcher, Cynthia H. McCollough, Lifeng Yu:
Correlation between a deep-learning-based model observer and human observer for a realistic lung nodule localization task in chest CT. 109520K - Gihun Kim, Minah Han, Hyunjung Shim, Jongduk Baek:
Implementation of an ideal observer model using convolutional neural network for breast CT images. 109520L - Weimin Zhou, Sayantan Bhadra, Frank J. Brooks, Mark A. Anastasio:
Learning stochastic object model from noisy imaging measurements using AmbientGANs. 109520M - Ziba Gandomkar
, Moayyad E. Suleiman
, Delgermaa Demchig, Patrick C. Brennan
, Mark F. McEntee:
BI-RADS density categorization using deep neural networks. 109520N - Nicole Kaiser, Andreas Fieselmann, Sulaiman Vesal, Nishant Ravikumar
, Ludwig Ritschl, Steffen Kappler, Andreas K. Maier:
Mammographic breast density classification using a deep neural network: assessment on the basis of inter-observer variability. 109520O
Observer Performance
- J. Michael O'Connor, Manish Sharma, Anitha Singareddy:
Development of methods to evaluate probability of reviewer's assessment bias in blinded independent central review (BICR) imaging studies. 109520P - Manish Sharma, J. Michael O'Connor, Anitha Singareddy:
Reader Disagreement Index: a better measure of overall review quality monitoring in an oncology trial compared to adjudication rate. 109520Q - Lucas R. Borges, Paulo Mazzoncini de Azevedo Marques
, Marcelo Andrade da Costa Vieira
:
A 2-AFC study to validate artificially inserted microcalcification clusters in digital mammography. 109520R - Leng Dong, Jacquie Jenkins, Eleanor Cornford, Yan Chen:
The relationship between breast screening readers' real-life performance and their associated performance on the PERFORMS scheme (Conference Presentation). 109520S - Jennifer Anne Cooper, David Jenkinson, Sian Taylor-Phillips
:
Blinding of the second reader in mammography screening: impact on behaviour and cancer detection. 109520T
Observer Performance in Breast Imaging
- Alistair Mackenzie
, Emma L. Thomson
, Premkumar Elangovan, Chantal Van Ongeval
, Lesley Cockmartin, Lucy M. Warren, Rosalind M. Given-Wilson, Louise S. Wilkinson, Matthew G. Wallis, David R. Dance, Kenneth C. Young:
An observer study to assess the detection of calcification clusters using 2D mammography, digital breast tomosynthesis, and synthetic 2D imaging. 109520U - Christiana Balta, Ioannis Sechopoulos
, Wouter J. H. Veldkamp, Ruben E. van Engen, Ingrid S. Reiser:
2D single-slice vs. 3D viewing of simulated tomosynthesis images of a small-scale breast tissue model. 109520V - Lucy M. Warren, Mark D. Halling-Brown, Louise S. Wilkinson, Rosalind M. Given-Wilson, Rita McAvinchey, Matthew G. Wallis, David R. Dance, K. C. Young:
Changes in breast density. 109520W - Morteza Heidari
, Seyedehnafiseh Mirniaharikandehei, Abolfazl Zargari Khuzani, Wei Qian, Yuchen Qiu, Bin Zheng:
Assessment of a quantitative mammographic imaging marker for breast cancer risk prediction. 109520X
Poster Session
- Badera Al Mohammad
, Stephen L. Hillis
, Warren M. Reed
, Charbel Saade, Patrick C. Brennan
:
Comparing senior residents performance to radiologists in lung cancer detection. 109520Y - Qi Gong, Qin Li, Marios A. Gavrielides, Nicholas Petrick:
Data transformations for variance stabilization in the statistical assessment of quantitative imaging biomarkers. 109520Z - Koji Shimizu, Gakuto Aoyama, Mizuho Nishio, Masahiro Yakami, Takeshi Kubo, Yutaka Emoto, Tatsuya Ito, Tomohiro Kuroda, Hiroyoshi Isoda:
A case study regarding clinical performance evaluation method of medical device software for approval. 1095210 - Lukas Trunz, D. J. Eschelman, C. F. Gonsalves, R. Adamo, J. K. Dave:
In-vitro and in-vivo comparison of radiation dose estimates between state-of-the-art interventional fluoroscopy systems. 1095211 - Eleni Michalopoulou, Alastair G. Gale, Yan Chen
:
Prostate Imaging Self-assessment and Mentoring (PRISM): a prototype self-assessment scheme. 1095212 - Min Zhang, Jia Yang Wang, Lei Zhang, Jun Feng, Yi Lv
:
Deep residual-network-based quality assessment for SD-OCT retinal images: preliminary study. 1095214 - Marc Jason Pomeroy, Matthew A. Barish
, Perry J. Pickhardt, Jie Yang, Zhengrong Liang:
A statistical analysis of oral tagging in CT colonography and its impact on flat polyp detection and characterization. 1095215 - Suneeta Mall, Elizabeth A. Krupinski, Claudia Mello-Thoms
:
Missed cancer and visual search of mammograms: what feature based machine-learning can tell us that deep-convolution learning cannot. 1095216
![](https://dblp1.uni-trier.de/img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.