


default search action
2nd MLMIR@MICCAI 2019: Shenzhen, China
- Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye:
Machine Learning for Medical Image Reconstruction - Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings. Lecture Notes in Computer Science 11905, Springer 2019, ISBN 978-3-030-33842-8
Deep Learning for Magnetic Resonance Imaging
- Balamurali Murugesan
, Vijaya Raghavan S, Kaushik Sarveswaran
, Keerthi Ram, Mohanasankar Sivaprakasam:
Recon-GLGAN: A Global-Local Context Based Generative Adversarial Network for MRI Reconstruction. 3-15 - Tong Zhang
, Laurence H. Jackson
, Alena Uus, James R. Clough
, Lisa Story, Mary A. Rutherford, Joseph V. Hajnal
, Maria Deprez
:
Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging. 16-24 - Sahar Yousefi, Lydiane Hirschler
, Merlijn van der Plas, Mohamed S. Elmahdy, Hessam Sokooti, Matthias van Osch, Marius Staring
:
Fast Dynamic Perfusion and Angiography Reconstruction Using an End-to-End 3D Convolutional Neural Network. 25-35 - Chaoping Zhang, Florian Dubost, Marleen de Bruijne
, Stefan Klein
, Dirk H. J. Poot:
APIR-Net: Autocalibrated Parallel Imaging Reconstruction Using a Neural Network. 36-46 - Guanhua Wang, Enhao Gong, Suchandrima Banerjee, John M. Pauly
, Greg Zaharchuk:
Accelerated MRI Reconstruction with Dual-Domain Generative Adversarial Network. 47-57 - Hongxiang Lin
, Matteo Figini
, Ryutaro Tanno, Stefano B. Blumberg, Enrico Kaden, Godwin Ogbole
, Biobele J. Brown, Felice D'Arco, David W. Carmichael
, Ikeoluwa Lagunju
, Helen J. Cross
, Delmiro Fernandez-Reyes, Daniel C. Alexander
:
Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator. 58-70 - Patricia M. Johnson, Matthew J. Muckley
, Mary Bruno, Erich Kobler, Kerstin Hammernik
, Thomas Pock, Florian Knoll
:
Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. 71-79 - Mingli Zhang, Yuhong Guo, Caiming Zhang, Jean-Baptiste Poline, Alan C. Evans
:
Modeling and Analysis Brain Development via Discriminative Dictionary Learning. 80-88
Deep Learning for Computed Tomography
- Akira Kudo
, Yoshiro Kitamura, Yuanzhong Li, Satoshi Iizuka, Edgar Simo-Serra:
Virtual Thin Slice: 3D Conditional GAN-based Super-Resolution for CT Slice Interval. 91-100 - Yixing Huang
, Alexander Preuhs, Günter Lauritsch, Michael Manhart, Xiaolin Huang, Andreas Maier:
Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior. 101-112 - Mayank Patwari
, Ralf Gutjahr, Rainer Raupach, Andreas Maier:
Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks. 113-124 - Tristan M. Gottschalk
, Björn W. Kreher, Holger Kunze
, Andreas Maier:
Deep Learning Based Metal Inpainting in the Projection Domain: Initial Results. 125-136
Deep Learning for General Image Reconstruction
- Benjamin Hou, Athanasios Vlontzos, Amir Alansary, Daniel Rueckert, Bernhard Kainz
:
Flexible Conditional Image Generation of Missing Data with Learned Mental Maps. 139-150 - Ozan Öktem, Camille Pouchol, Olivier Verdier:
Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation. 151-162 - Shaojin Cai, Yuyang Xue
, Qinquan Gao, Min Du, Gang Chen, Hejun Zhang, Tong Tong:
Stain Style Transfer Using Transitive Adversarial Networks. 163-172 - Sungjun Lim, Jong Chul Ye:
Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer. 173-180 - Laura Dal Toso, Elisabeth Pfaehler
, Ronald Boellaard, Julia A. Schnabel
, Paul K. Marsden:
Deep Learning Based Approach to Quantification of PET Tracer Uptake in Small Tumors. 181-192 - Jiahong Ouyang, Guanhua Wang, Enhao Gong, Kevin Chen, John M. Pauly
, Greg Zaharchuk:
Task-GAN: Improving Generative Adversarial Network for Image Reconstruction. 193-204 - Peter A. von Niederhäusern, Carlo Seppi
, Simon Pezold
, Guillaume Nicolas, Spyridon Gkoumas
, Stephan K. Haerle, Philippe C. Cattin
:
Gamma Source Location Learning from Synthetic Multi-pinhole Collimator Data. 205-214 - Michael Green, Miri Sklair-Levy, Nahum Kiryati
, Eli Konen, Arnaldo Mayer:
Neural Denoising of Ultra-low Dose Mammography. 215-225 - Alberto Gómez, Veronika A. Zimmer, Nicolas Toussaint, Robert Wright, James R. Clough
, Bishesh Khanal
, Milou P. M. van Poppel
, Emily Skelton
, Jackie Matthews, Julia A. Schnabel
:
Image Reconstruction in a Manifold of Image Patches: Application to Whole-Fetus Ultrasound Imaging. 226-235 - Saeed Izadi, Darren B. Sutton, Ghassan Hamarneh
:
Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy. 236-244 - Chengjia Wang, Giorgos Papanastasiou
, Sotirios A. Tsaftaris, Guang Yang, Calum D. Gray
, David E. Newby
, Gillian Macnaught, Tom J. MacGillivray
:
TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis. 245-254 - Farah Deeba
, Robert Rohling:
PredictUS: A Method to Extend the Resolution-Precision Trade-Off in Quantitative Ultrasound Image Reconstruction. 255-264

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.