


default search action
FAIMI@MICCAI 2025: Daejeon, South Korea
- Esther Puyol-Antón

, Enzo Ferrante
, Aasa Feragen
, Andrew P. King
, Veronika Cheplygina
, Melanie Ganz-Benjaminsen
, Ben Glocker
, Eike Petersen
, Heisook Lee:
Fairness of AI in Medical Imaging - Third International Workshop, FAIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings. Lecture Notes in Computer Science 15976, Springer 2026, ISBN 978-3-032-05869-0 - Chin-Wei Huang, Chi-Yu Chen, Mu-Yi Shen, Kuan-Chang Shih, Shih-Chih Lin, Po-Chih Kuo:

LTCXNet: Tackling Long-Tailed Multi-label Classification and Racial Bias in Chest X-Ray Analysis. 1-10 - Théo Sourget

, David S. Restrepo, Céline Hudelot, Enzo Ferrante, Stergios Christodoulidis, Maria Vakalopoulou:
Fairness and Robustness of CLIP-Based Models for Chest X-Rays. 11-21 - You-Qi Chang-Liao, Po-Chih Kuo:

ShortCXR: Benchmarking Self-supervised Learning for Shortcut Mitigation in Chest X-Ray Diagnostics. 22-31 - Abubakr Shafique, Amanda Dy, Xiaoli Qin, Najd Alshamlan, Susan Done, Dimitrios Androutsos, April Khademi:

How Fair are Foundation Models? Exploring the Role of Covariate Bias in Histopathology. 32-42 - Joris Fournel, Paraskevas Pegios

, Emilie Pi Fogtmann Sejer, Martin Grønnebæk Tolsgaard, Aasa Feragen:
The Cervix in Context: Bias Assessment in Preterm Birth Prediction. 43-52 - Heejae Lee, Sejung Yang, Yuseong Chu, Byungho Oh:

Identifying Gender-Specific Visual Bias Signals in Skin Lesion Classification. 53-62 - Grzegorz Skorupko, Richard Osuala, Zuzanna Szafranowska, Kaisar Kushibar, Vien Ngoc Dang, Nay Aung, Steffen E. Petersen, Karim Lekadir, Polyxeni Gkontra:

Fairness-Aware Data Augmentation for Cardiac MRI Using Text-Conditioned Diffusion Models. 63-73 - Emma A. M. Stanley

, Raghav Mehta, Mélanie Roschewitz
, Nils D. Forkert
, Ben Glocker
:
Exploring the Interplay of Label Bias with Subgroup Size and Separability: A Case Study in Mammographic Density Classification. 74-83 - Tiarna Lee, Esther Puyol-Antón, Bram Ruijsink, Miaojing Shi, Andrew P. King:

Does a Rising Tide Lift All Boats? Bias Mitigation for AI-Based CMR Segmentation. 84-93 - Louisa Fay, Hajer Reguigui, Bin Yang, Sergios Gatidis, Thomas Küstner:

MIMM-X: Disentangling Spurious Correlations for Medical Image Analysis. 94-103 - Shengjia Chen

, Ruchika Verma
, Kevin Clare, Jannes Jegminat
, Eugenia Alleva, Kuan-Lin Huang
, Brandon Veremis
, Thomas J. Fuchs
, Gabriele Campanella
:
Predicting Patient Self-reported Race From Skin Histological Images with Deep Learning. 104-114 - Nikolette Pedersen, Regitze Sydendal, Andreas Wulff, Ralf Raumanns, Eike Petersen, Veronika Cheplygina:

Robustness and Sex Differences in Skin Cancer Detection: Logistic Regression vs CNNs. 115-124 - Hartmut Häntze

, Myrthe A. D. Buser
, Alessa Hering
, Lisa C. Adams
, Keno K. Bressem
:
Sex-Based Bias Inherent in the Dice Similarity Coefficient: A Model Independent Analysis for Multiple Anatomical Structures. 125-134 - Partha Shah, Durva Sankhe, Maariyah Rashid, Zakaa Khaled, Esther Puyol-Antón, Tiarna Lee, Maram Alqarni, Sweta Rai, Andrew P. King:

The Impact of Skin Tone Label Granularity on the Performance and Fairness of AI Based Dermatology Image Classification Models. 135-144 - Rajat Rasal, Avinash Kori, Ben Glocker:

Causal Representation Learning with Observational Grouping for CXR Classification. 145-155 - Akshit Achara, Esther Puyol-Antón, Alexander Hammers, Andrew P. King:

Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-Based Alzheimer's Disease Classification. 156-166 - Gelei Xu, Yawen Wu, Zhenge Jia, Jingtong Hu, Yiyu Shi:

Fair Dermatological Disease Diagnosis Through Auto-weighted Federated Learning and Performance-Aware Personalization. 167-176 - Artur Jose Marques Paulo

, Pedro Vinicius Alves Silva
, Tayran Olegário, Paula Bresciani de Andrade
, Klaus Schumacher
, Rafael Maffei Loureiro
, Joselisa Peres Queiroz de Paiva
, Raissa Souza
, Bruna Garbes Goncalves Pinto
:
Assessing Annotator and Clinician Biases in an Open-Source-Based Tool Used to Generate Head CT Segmentations for Deep Learning Training. 177-186 - Dishantkumar Sutariya, Eike Petersen

:
meval: A Statistical Toolbox for Fine-Grained Model Performance Analysis. 187-197 - Utku Ozbulak, Seyed Amir Mousavi, Francesca Tozzi, Niki Rashidian, Wouter Willaert, Wesley De Neve, Joris Vankerschaver:

Revisiting the Evaluation Bias Introduced by Frame Sampling Strategies in Surgical Video Segmentation Using SAM2. 198-207 - Leonor Fernandes, Tiago Gonçalves

, João Matos
, Luis Filipe Nakayama, Jaime S. Cardoso
:
Disentanglement and Assessment of Shortcuts in Ophthalmological Retinal Imaging Exams. 208-217

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














