


default search action
18th ECML 2007: Warsaw, Poland
- Joost N. Kok, Jacek Koronacki, Ramón López de Mántaras, Stan Matwin, Dunja Mladenic, Andrzej Skowron:

Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings. Lecture Notes in Computer Science 4701, Springer 2007, ISBN 978-3-540-74957-8
Invited Talks (shared with PKDD 2007)
- Tom M. Mitchell:

Learning, Information Extraction and the Web. 1 - Peter A. Flach:

Putting Things in Order: On the Fundamental Role of Ranking in Classification and Probability Estimation. 2-3 - Ricardo A. Baeza-Yates:

Mining Queries. 4 - Barry Smyth:

Adventures in Personalized Information Access. 5
Long Papers
- David Andrzejewski, Anne Mulhern, Ben Liblit

, Xiaojin Zhu:
Statistical Debugging Using Latent Topic Models. 6-17 - Leonor Becerra-Bonache, Colin de la Higuera

, Jean-Christophe Janodet, Frédéric Tantini:
Learning Balls of Strings with Correction Queries. 18-29 - Paul N. Bennett:

Neighborhood-Based Local Sensitivity. 30-41 - Steffen Börm

, Jochen Garcke:
Approximating Gaussian Processes with H2-Matrices. 42-53 - Laurent Boyer, Amaury Habrard, Marc Sebban:

Learning Metrics Between Tree Structured Data: Application to Image Recognition. 54-66 - John Burge, Terran Lane:

Shrinkage Estimator for Bayesian Network Parameters. 67-78 - Xiongcai Cai, Arcot Sowmya:

Level Learning Set: A Novel Classifier Based on Active Contour Models. 79-90 - Jérôme Callut, Pierre Dupont:

Learning Partially Observable Markov Models from First Passage Times. 91-103 - Michael Connor, Dan Roth:

Context Sensitive Paraphrasing with a Global Unsupervised Classifier. 104-115 - Pinar Donmez, Jaime G. Carbonell, Paul N. Bennett:

Dual Strategy Active Learning. 116-127 - Kenneth Dwyer, Robert Holte:

Decision Tree Instability and Active Learning. 128-139 - Derek Greene

, Padraig Cunningham
:
Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Semi-supervised Clustering. 140-151 - Thomas Gärtner

, Gemma C. Garriga:
The Cost of Learning Directed Cuts. 152-163 - Tony Jebara, Yingbo Song, Kapil Thadani:

Spectral Clustering and Embedding with Hidden Markov Models. 164-175 - Angelika Kimmig, Luc De Raedt

, Hannu Toivonen:
Probabilistic Explanation Based Learning. 176-187 - Gregory Kuhlmann, Peter Stone:

Graph-Based Domain Mapping for Transfer Learning in General Games. 188-200 - Xiaoli Li

, Bing Liu, See-Kiong Ng:
Learning to Classify Documents with Only a Small Positive Training Set. 201-213 - Xiao-Lin Li, Zhi-Hua Zhou:

Structure Learning of Probabilistic Relational Models from Incomplete Relational Data. 214-225 - Dimitrios Mavroeidis, Michalis Vazirgiannis:

Stability Based Sparse LSI/PCA: Incorporating Feature Selection in LSI and PCA. 226-237 - Andreas Nägele, Mathäus Dejori, Martin Stetter:

Bayesian Substructure Learning - Approximate Learning of Very Large Network Structures. 238-249 - Gerhard Neumann, Michael Pfeiffer, Wolfgang Maass:

Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs. 250-261 - Sunho Park, Seungjin Choi:

Source Separation with Gaussian Process Models. 262-273 - Elisa Ricci, Tijl De Bie, Nello Cristianini:

Discriminative Sequence Labeling by Z-Score Optimization. 274-285 - Mark Schmidt, Glenn Fung, Rómer Rosales:

Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches. 286-297 - Matthias W. Seeger, Sebastian Gerwinn, Matthias Bethge:

Bayesian Inference for Sparse Generalized Linear Models. 298-309 - David B. Skalak, Alexandru Niculescu-Mizil, Rich Caruana:

Classifier Loss Under Metric Uncertainty. 310-322 - Daria Sorokina, Rich Caruana, Mirek Riedewald:

Additive Groves of Regression Trees. 323-334 - Alessandro Sperduti:

Efficient Computation of Recursive Principal Component Analysis for Structured Input. 335-346 - Harald Steck:

Hinge Rank Loss and the Area Under the ROC Curve. 347-358 - Jan Struyf, Saso Dzeroski

:
Clustering Trees with Instance Level Constraints. 359-370 - Jan-Nikolas Sulzmann, Johannes Fürnkranz, Eyke Hüllermeier:

On Pairwise Naive Bayes Classifiers. 371-381 - Rikiya Takahashi:

Separating Precision and Mean in Dirichlet-Enhanced High-Order Markov Models. 382-393 - Stephan Timmer, Martin A. Riedmiller:

Safe Q-Learning on Complete History Spaces. 394-405 - Grigorios Tsoumakas

, Ioannis P. Vlahavas:
Random k -Labelsets: An Ensemble Method for Multilabel Classification. 406-417 - Anneleen Van Assche, Hendrik Blockeel

:
Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble. 418-429 - Alexander Vezhnevets, Olga Barinova:

Avoiding Boosting Overfitting by Removing Confusing Samples. 430-441 - Thomas J. Walsh, Ali Nouri, Lihong Li, Michael L. Littman:

Planning and Learning in Environments with Delayed Feedback. 442-453 - Wei Wang, Zhi-Hua Zhou:

Analyzing Co-training Style Algorithms. 454-465 - Daan Wierstra, Jürgen Schmidhuber:

Policy Gradient Critics. 466-477 - Shaomin Wu, Peter A. Flach, Cèsar Ferri Ramirez:

An Improved Model Selection Heuristic for AUC. 478-489 - Fei Zheng, Geoffrey I. Webb:

Finding the Right Family: Parent and Child Selection for Averaged One-Dependence Estimators. 490-501
Short Papers
- Annalisa Appice, Saso Dzeroski

:
Stepwise Induction of Multi-target Model Trees. 502-509 - Paulo J. Azevedo

, Alípio Mário Jorge
:
Comparing Rule Measures for Predictive Association Rules. 510-517 - Korinna Bade

, Marcel Hermkes, Andreas Nürnberger
:
User Oriented Hierarchical Information Organization and Retrieval. 518-526 - Sabri Bayoudh, Harold Mouchère

, Laurent Miclet, Éric Anquetil:
Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition. 527-534 - Steven Busuttil, Yuri Kalnishkan:

Weighted Kernel Regression for Predicting Changing Dependencies. 535-542 - András Bánhalmi, András Kocsor, Róbert Busa-Fekete:

Counter-Example Generation-Based One-Class Classification. 543-550 - Mumin Cebe, Cigdem Gunduz Demir:

Test-Cost Sensitive Classification Based on Conditioned Loss Functions. 551-558 - Xiangyu Duan, Jun Zhao, Bo Xu:

Probabilistic Models for Action-Based Chinese Dependency Parsing. 559-566 - Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel

:
Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search. 567-574 - Peter A. Flach, Edson Takashi Matsubara:

A Simple Lexicographic Ranker and Probability Estimator. 575-582 - Eyke Hüllermeier, Johannes Fürnkranz:

On Minimizing the Position Error in Label Ranking. 583-590 - Goele Hollanders, Geert Jan Bex, Marc Gyssens

, Ronald L. Westra, Karl Tuyls
:
On Phase Transitions in Learning Sparse Networks. 591-599 - Rong Jin, Ming Wu, Rahul Sukthankar:

Semi-supervised Collaborative Text Classification. 600-607 - Samuel Kaski, Jaakko Peltonen

:
Learning from Relevant Tasks Only. 608-615 - Alexandre Klementiev, Dan Roth, Kevin Small:

An Unsupervised Learning Algorithm for Rank Aggregation. 616-623 - Dragi Kocev

, Celine Vens, Jan Struyf, Saso Dzeroski
:
Ensembles of Multi-Objective Decision Trees. 624-631 - Tilman Lange, Joachim M. Buhmann:

Kernel-Based Grouping of Histogram Data. 632-639 - Rachel Lomasky, Carla E. Brodley, M. Aernecke, David R. Walt

, Mark A. Friedl:
Active Class Selection. 640-647 - Francis Maes, Ludovic Denoyer, Patrick Gallinari:

Sequence Labeling with Reinforcement Learning and Ranking Algorithms. 648-657 - Sang-Hyeun Park, Johannes Fürnkranz:

Efficient Pairwise Classification. 658-665 - Jin Hyeong Park, Chandan K. Reddy:

Scale-Space Based Weak Regressors for Boosting. 666-673 - Dan Pelleg, Dorit Baras:

K -Means with Large and Noisy Constraint Sets. 674-682 - Katharina Probst, Rayid Ghani:

Towards 'Interactive' Active Learning in Multi-view Feature Sets for Information Extraction. 683-690 - Tapani Raiko, Alexander Ilin, Juha Karhunen:

Principal Component Analysis for Large Scale Problems with Lots of Missing Values. 691-698 - Jan Ramon, Kurt Driessens, Tom Croonenborghs:

Transfer Learning in Reinforcement Learning Problems Through Partial Policy Recycling. 699-707 - Umaa Rebbapragada, Carla E. Brodley:

Class Noise Mitigation Through Instance Weighting. 708-715 - Ulrich Rückert, Stefan Kramer:

Optimizing Feature Sets for Structured Data. 716-723 - Victor S. Sheng, Charles X. Ling:

Roulette Sampling for Cost-Sensitive Learning. 724-731 - Tomás Singliar, Milos Hauskrecht:

Modeling Highway Traffic Volumes. 732-739 - Zoltán Szabó, Barnabás Póczos, András Lörincz:

Undercomplete Blind Subspace Deconvolution Via Linear Prediction. 740-747 - Jo-Anne Ting, Evangelos A. Theodorou, Stefan Schaal:

Learning an Outlier-Robust Kalman Filter. 748-756 - Deepak Verma, Rajesh P. N. Rao

:
Imitation Learning Using Graphical Models. 757-764 - Marcin Wojnarski:

Nondeterministic Discretization of Weights Improves Accuracy of Neural Networks. 765-772 - Liang Xiong, Fei Wang, Changshui Zhang:

Semi-definite Manifold Alignment. 773-781 - Qubo You, Nanning Zheng, Shaoyi Du, Yang Wu:

General Solution for Supervised Graph Embedding. 782-789 - Amelia Zafra

, Sebastián Ventura:
Multi-objective Genetic Programming for Multiple Instance Learning. 790-797 - Monika Záková, Filip Zelezný:

Exploiting Term, Predicate, and Feature Taxonomies in Propositionalization and Propositional Rule Learning. 798-805

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














