


default search action
18th ECCV Workshops 2024: Milan, Italy - Part III
- Alessio Del Bue, Cristian Canton, Jordi Pont-Tuset, Tatiana Tommasi:
Computer Vision - ECCV 2024 Workshops - Milan, Italy, September 29-October 4, 2024, Proceedings, Part III. Lecture Notes in Computer Science 15625, Springer 2025, ISBN 978-3-031-91834-6 - Luigi Riz
, Sergio Povoli
, Andrea Caraffa
, Davide Boscaini
, Mohamed Lamine Mekhalfi
, Paul Chippendale
, Marjut Turtiainen, Birgitta Partanen
, Laura Smith Ballester
, Juan Fco. Blanes Noguera
, Alessio Franchi
, Elisa Castelli, Giacomo Piccinini
, Luca Marchesotti, Micael Santos Couceiro
, Fabio Poiesi
:
[inline-graphic not available: see fulltext] rry Image Dataset Collected in Finnish Forests and Peatlands Using Drones. 1-16 - Tianyou Jiang, Mingshun Shao, Tianyi Zhang, Xiaoyu Liu, Qun Yu:
Soybean Pod and Seed Counting in Both Outdoor Fields and Indoor Laboratories Using Unions of Deep Neural Networks. 17-30 - Ahmed Emam
, Mohamed M. Farag
, Jana Kierdorf
, Lasse Klingbeil
, Uwe Rascher
, Ribana Roscher
:
A Framework for Enhanced Decision Support in Digital Agriculture Using Explainable Machine Learning. 31-45 - Katherine Margaret Frances James
, Karoline Heiwolt
, Daniel James Sargent
, Grzegorz Cielniak
:
Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw). 46-63 - Jiaren Zhou
, Man Zhang
, Mengqi Zhang
, Minjuan Wang
:
3D Phenotyping of Canopy Occupation Volume as a Major Predictor for Canopy Photosynthesis in Rice (Oryza sativa L.). 64-80 - Jim Buffat, Miguel Pato, Kevin Alonso, Stefan Auer, Emiliano Carmona, Stefan W. Maier, Rupert Müller, Patrick Rademske, Uwe Rascher, Hanno Scharr:
Retrieval of Sun-Induced Plant Fluorescence in the O2-A Absorption Band from DESIS Imagery. 81-100 - Mahmoud Abdulsalam, Usman A. Zahidi, Bradley Hurst, Simon Pearson, Grzegorz Cielniak, James Brown:
Unsupervised Tomato Split Anomaly Detection Using Hyperspectral Imaging and Variational Autoencoders. 101-114 - Daniele Rege Cambrin
, Eleonora Poeta
, Eliana Pastor
, Tania Cerquitelli
, Elena Baralis
, Paolo Garza
:
KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation. 115-131 - Pasquale De Marinis
, Gennaro Vessio
, Giovanna Castellano
:
RoWeeder: Unsupervised Weed Mapping Through Crop-Row Detection. 132-145 - Mark Niemeyer
, Joachim Hertzberg
, Grzegorz Cielniak
:
Consolidation of Symbolic Instances Using Sensor Data via Tracklet Merging for Long-Term Monitoring of Crops. 146-159 - Soma Dasgupta, Swarnava Dey
:
Automated Generation of Accurate, Compact and Focused Crop and Weed Segmentation Models. 160-176 - Ahmet Oguz Saltik
, Alicia Allmendinger
, Anthony Stein
:
Comparative Analysis of YOLOv9, YOLOv10 and RT-DETR for Real-Time Weed Detection. 177-193 - Jan Christoph Krause
, Mark Niemeyer
, Janosch Bajorath
, Naeem Iqbal
, Joachim Hertzberg
:
Towards Auto-generated Ground Truth for Evaluation of Perception Systems in Agriculture. 194-206 - Yutong Zhou
, Masahiro Ryo
:
AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models. 207-223 - Renke Hohl
, Moritz Schauer
, Seyed Eghbal Ghobadi
:
Deep Learning Based Growth Modeling of Plant Phenotypes. 224-239 - Rostislav Shepel, Andrew Romanowski
, Mario Valerio Giuffrida
:
A Simple Approach to Pavement Cell Segmentation. 240-251 - Sourav Modak
, Anthony Stein
:
Enhancing Weed Detection Performance by Means of GenAI-Based Image Augmentation. 252-266 - Andrew Heschl
, Mauricio Murillo
, Keyhan Najafian
, Farhad Maleki
:
SynthSet: Generative Diffusion Model for Semantic Segmentation in Precision Agriculture. 267-283 - Numair Nadeem, Muhammad Hamza Asad
, Abdul Bais
:
Robust UDA for Crop and Weed Segmentation: Multi-scale Attention and Style-Adaptive Techniques. 284-302 - Aayush Mishra
, Manasi Patwardhan
, Parijat Deshpande
, Beena Rai
:
Ordinal-Meta Learning for Fine-Grained Fruit Quality Prediction. 303-318 - Hosein Beheshtifard
, Elijah Mickelson
, Keyhan Najafian
, Farhad Maleki
:
Beyond Annotations: Efficient Wheat Head Segmentation Using L-Systems, Game Engines, and Student-Teacher Models. 319-334 - Madeleine Darbyshire
, Elizabeth Sklar
, Simon Parsons
:
Exploiting Boundary Loss for the Hierarchical Panoptic Segmentation of Plants and Leaves. 335-349

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.